OPENCV中SVM机器学习功能的简单示例

最近在搞机器学习,使用SVM机器学习,解决了工作中的一个文本分类的任务,使用复旦大学的语料库测试,准确率还是很高的,觉得SVM太好用了。

技痒之下忍不住要分享,但肯定不能把工作的代码放到这里来,所以我写了一个有启发的示例程序上来供大家参考。

使用这个示例程序的前置条件是:要安装配置好OpenCV的开发环境。本示例程序的开发环境是VS2015。示例程序如下:


#include "opencv2\core.hpp"
#include "opencv2\imgproc.hpp"
#include "opencv2\imgcodecs.hpp"
#include "opencv2\highgui.hpp"
#include "opencv2\ml.hpp"

using namespace cv;
using namespace cv::ml;

int main(int, char**)
{
	int width = 512, height = 512;						//512*512 的正方形区域
	Mat image = Mat::zeros(height, width, CV_8UC3);

	int labels[8] = { 1, 1, 0, 0, 1, 1, 0, 0};			//8 个结果
	Mat labelsMat(8, 1, CV_32SC1, labels);

	float trainingData[8][2] = { {10, 10},				//8 样本点(和结果对应)
								 {10, 50},
								 {501, 255},
								 {500, 501},
								 {40,30},
								 {70, 60},
								 {300,300},
								 {60, 500} };
	Mat trainingDataMat(8, 2, CV_32FC1, trainingData);

	Ptr<SVM> svm = SVM::create();
	svm->setType(SVM::C_SVC);			// 类型
	svm->setKernel(SVM::LINEAR);		// 核函数
	Ptr<TrainData> td = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat); //样本是按行排列的
	
	svm->train(td);		//训练

	Vec3b green(0, 255, 0), blue(255, 0, 0);
	Mat sampleMat(1, 2, CV_32F);
	float response;
	// 预测512*512正方形区域内的每个点的归类
	for (int i = 0; i < image.rows; ++i)
		for (int j = 0; j < image.cols; ++j)
		{
			sampleMat.at<float>(0, 0) = i;
			sampleMat.at<float>(0, 1) = j;
			response = svm->predict(sampleMat);

			if (response == 1)		//1画绿色
				image.at<Vec3b>(i, j) = green;
			else if (response == 0)	//0画蓝色
				image.at<Vec3b>(i, j) = blue;
		}

	// 标出样本点的位置
 	int thickness = -1;
 	int lineType = 8;
	int x, y;
	Scalar s;
	for (int i = 0; i < 8; i++) {
		if (labels[i]) {
			s = Scalar(255, 0, 255);
		} else {
			s = Scalar(255, 255, 0);
		}
		x = trainingData[i][0];
		y = trainingData[i][1];
		circle(image, Point(x, y), 5, s, thickness, lineType);
	}

	imshow("SVM Simple Example", image); 
	return waitKey(0);
}

程序的运行效果如下:


阅读更多
个人分类: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭