tf.image.resize_bilinear的局限性

1.背景

我们在model各层之间转换时,难免要对tensor的shape做改变。我在这里记录一下几个改变大小的函数。

2.方法

(1)Reshape

我这里指的是keras.layers.Reshape层,当然也有reshape方法,一个道理。

x = Reshape((H*W, classes)) (x)

比如这样的,我想要将一个(H,W,classes)变成上述的(H*W,classes),这样的变化在转换为one-hot编码时候会使用到。我们可以看到Reshape,你需要前后元素的数目一致,不能说(H,W)的图reshape成(H1*W1)等诸如此类的,如果那样的话,就会报错。

那么,如果我想要缩小图片或者扩大图片,我该怎么做呢?下面介绍几种方法。

(2)K.tf.image.resize_bilinear(只能针对channel_last处理)

这个函数可以将你的tensor转换成你想要的目标大小,但是这个函数只能针对channel_last的tensor,也就是你输入的数据它默认并且只限定你是(batchsize,h,w,channel),并且它会对你的第1维和第2维做调整:

x=K.tf.image.resize_bilinear(x,size=(target_h,target_w))

这就很难

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值