区间和 离散化

假定有一个无限长的数轴,数轴上每个坐标上的数都是 00。

现在,我们首先进行 nn 次操作,每次操作将某一位置 xx 上的数加 cc。

接下来,进行 mm 次询问,每个询问包含两个整数 ll 和 rr,你需要求出在区间 [l,r][l,r] 之间的所有数的和。

输入格式

第一行包含两个整数 nn 和 mm。

接下来 nn 行,每行包含两个整数 xx 和 cc。

再接下来 mm 行,每行包含两个整数 ll 和 rr。

输出格式

共 mm 行,每行输出一个询问中所求的区间内数字和。

数据范围

−109≤x≤109−109≤x≤109,
1≤n,m≤1051≤n,m≤105,
−109≤l≤r≤109−109≤l≤r≤109,
−10000≤c≤10000−10000≤c≤10000

输入样例:

3 3
1 2
3 6
7 5
1 3
4 6
7 8

输出样例:

8
0
5

 

重要知识点:

离散化,把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。

通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。例如:

原数据:1,999,100000,15;处理后:1,3,4,2;

原数据:{100,200},{20,50000},{1,400};

处理后:{3,4},{2,6},{1,5};

主要思路:

在求区间和的时候,我们可以直接想到用前缀和的思想去实现,我们去查找alls中的x的下标的时

候,使用二分查找法可以大大提高时间效率,可以去找一个方法去让所有数据变得单调。同时需要

给alls进行去重操作,alls中存储的一定会存在重复使用的下标

 

#include<bits/stdc++.h>
using namespace std;

typedef pair<int,int> PII;
const int N=3e5+10;

int a[N],s[N]; //a[] 是用来存放值  s[]是用来求前缀和

vector<int>alls; //这个用来存储离散下标的
vector<PII> add,query;

int find(int x)//得到离散化后的坐标!
{
    int l=0,r=alls.size()-1;
    while(l<r)
    {
        int mid=l+r>>1;
        if(alls[mid] >= x) r=mid;
        else l=mid+1;
    }
    return r+1;//之所以要r+1 是方便之后的前缀和运算
}

int main()
{
    int n,m;
    scanf("%d %d",&n,&m);
    int x,c;
    for(int i=1;i<=n;i++)
    {
        scanf("%d %d",&x,&c);
        alls.push_back(x);
        add.push_back({x,c});
    }
    int l,r;
    for(int i=1;i<=m;i++)
    {
        scanf("%d %d",&l,&r);
        alls.push_back(l);
        alls.push_back(r);
        query.push_back({l,r});
    }
    sort(alls.begin(),alls.end());//排序
    alls.erase(unique(alls.begin(),alls.end()),alls.end());//去重
    
    //插入操作
    for(auto item : add)
    {
        int x=find(item.first);
        a[x]+=item.second;
    }
    
    //已经插入好所有数据  可以来求前缀和
    for(int i=1;i<=alls.size();i++) s[i]=s[i-1]+a[i];
    
    for(auto item : query)
    {
        int l=find(item.first); 
        int r=find(item.second);
        printf("%d\n",s[r]-s[l-1]);
    }
}

 GYX

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值