Faster R-CNN学习笔记(RBK)

  拜读RBK的前两篇论文:Region-based Convolutional Networks for

Accurate Object Detection and Segmentation和Fast R-CNN,用局部卷积神经网络来识别目标。

  前两篇论文的思想是一样的,都是使用其他的方法先提取待识别目标的候选区域,objectness [51], selective search [21], category-independent
object proposals [52], constrained parametric min-cuts
(CPMC) [22], multi-scale combinatorial grouping,我也用过edgebox的方法来提取候选区域。

    提取出一幅图像的候选区域之后,再对每个候选区域提取出CNN特征,再通过SVM分类的方法,来识别出目标的种类。

    fast-RCNN相比之前有改进,在训练阶段和测试时候速度有提升,但是对实时检测目标来说,速度还是不够快。

    RBK后来先出的论文,Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks。共享计算图像卷积特征的结果,用来同时计算出图像的候选区域,以及打分识别出图像内容,关键是还有源码,大赞,是基于caffe框架下的,大赞。


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
R-CNN、Fast R-CNNFaster R-CNN是目标检测领域的三个重要算法,用于在图像中检测和定位物体。 1. R-CNN(Region-based Convolutional Neural Networks)是一种基于区域的卷积神经网络方法。它首先在输入图像中生成候选区域,然后对每个候选区域进行卷积特征提取,并使用支持向量机(SVM)进行分类。最后,使用回归器对候选区域进行边界框的微调。R-CNN的主要缺点是速度较慢,因为每个候选区域都需要独立地进行卷积特征提取和分类。 2. Fast R-CNN是对R-CNN的改进。它引入了RoI池化层(Region of Interest pooling),可以在整个图像上共享卷积特征提取,从而大大提高了速度。Fast R-CNN首先对整个图像进行卷积特征提取,然后根据候选区域的位置信息,在卷积特征图上进行RoI池化,将每个候选区域映射为固定大小的特征向量。最后,通过全连接层进行分类和边界框回归。 3. Faster R-CNN是对Fast R-CNN的进一步改进,主要改进了候选区域的生成过程。Faster R-CNN引入了一个称为Region Proposal Network(RPN)的网络,用于生成候选区域。RPN通过在卷积特征图上滑动一个小窗口,预测窗口内是否包含物体以及物体的边界框。然后,这些候选区域被输入到Fast R-CNN中进行分类和边界框回归。Faster R-CNN通过共享卷积特征提取和引入RPN网络,进一步提高了检测速度和准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值