算法导论(Strasssen's algorithm)

#include<iostream>
#include<vector>
#include<string>
#include<set>
#include<map>
#include<unordered_set>
#include<unordered_map>
#include<algorithm>
#include<xfunctional>
using namespace std;

vector<vector<int>> add(vector<vector<int>> A, vector<vector<int>> B){
	int size = A.size();
	vector<vector<int>> res(size,vector<int>(size,0));
	if (size == 0) return res;
	for (int i = 0; i < size; i++){
		for (int j = 0; j < size; j++){
			res[i][j] = A[i][j] + B[i][j];
		}
	}
	return res;
}

vector<vector<int>> sub(vector<vector<int>> A,vector<vector<int>> B){
	int size = A.size();
	vector<vector<int>> res(size,vector<int>(size,0));
	for (int i = 0; i < size; i++){
		for (int j = 0; j < size; j++){
			res[i][j] = A[i][j] - B[i][j];
		}
	}
	return res;
}


void multiply(vector<vector<int>> A,vector<vector<int>> B,vector<vector<int>>& C){
	int n = A.size();
	if (n == 1){
		C[0][0] = A[0][0] * B[0][0];
		return;
	}

	int n1 = n / 2;
	vector<vector<int>> A11(n1,vector<int>(n1,0));
	vector<vector<int>> B22(n1,vector<int>(n1,0));
	vector<vector<int>> B11(n1,vector<int>(n1,0));
	vector<vector<int>> A22(n1,vector<int>(n1,0));
	vector<vector<int>> s1(n1,vector<int>(n1,0));
	vector<vector<int>> s2(n1,vector<int>(n1,0));
	vector<vector<int>> s3(n1,vector<int>(n1,0));
	vector<vector<int>> s4(n1,vector<int>(n1,0));
	vector<vector<int>> s5(n1,vector<int>(n1,0));
	vector<vector<int>> s6(n1,vector<int>(n1,0));
	vector<vector<int>> s7(n1,vector<int>(n1,0));
	vector<vector<int>> s8(n1,vector<int>(n1,0));
	vector<vector<int>> s9(n1,vector<int>(n1,0));
	vector<vector<int>> s10(n1,vector<int>(n1,0));
	for (int i = 0; i < n1; i++){
		for (int j = n1; j < n; j++){
			s1[i][j-n1] = B[i][j] - B[i+n1][j];
			s7[i][j-n1] = A[i][j] - A[i+n1][j];
		}
	}
	for (int i = 0; i < n1; i++){
		for (int j = 0; j < n1; j++){
			s2[i][j] = A[i][j] + A[i][j+n1];
			s10[i][j] = B[i][j] + B[i][j+n1];
			A11[i][j] = A[i][j];
			B11[i][j] = B[i][j];
			A22[i][j] = A[i+n1][j+n1];
			B22[i][j] = B[i+n1][j+n1];
		}
	}

	for (int i = n1; i < n; i++){
		for (int j = 0; j < n1; j++){
			s3[i-n1][j] = A[i][j] + A[i][j+n1];
			s8[i-n1][j] = B[i][j] + B[i][j+n1];
		}
	}

	for (int i = 0; i < n1; i++){
		for (int j = 0; j < n1; j++){
			s4[i][j] = B[i+n1][j] - B[i][j];
			s9[i][j] = A[i][j] - A[i+n1][j];
		}
	}
	for (int i = 0; i < n1; i++){
		for (int j = 0; j < n1; j++){
			s5[i][j] = A[i][j] + A[i+n1][j+n1];
			s6[i][j] = B[i][j] + B[i+n1][j+n1];
		}
	}
	vector<vector<int>> p1(n1,vector<int>(n1,0));
	vector<vector<int>> p2(n1,vector<int>(n1,0));
	vector<vector<int>> p3(n1,vector<int>(n1,0));
	vector<vector<int>> p4(n1,vector<int>(n1,0));
	vector<vector<int>> p5(n1,vector<int>(n1,0));
	vector<vector<int>> p6(n1,vector<int>(n1,0));
	vector<vector<int>> p7(n1,vector<int>(n1,0));
	multiply(A11,s1,p1);
	multiply(s2,B22,p2);
	multiply(s3,B11,p3);
	multiply(A22,s4,p4);
	multiply(s5,s6,p5);
	multiply(s7,s8,p6);
	multiply(s9,s10,p7);
	vector<vector<int>> c11;
	vector<vector<int>> c12;
	vector<vector<int>> c21;
	vector<vector<int>> c22;
	c11 = add(sub(add(p5, p4), p2), p6);
	c12 = add(p1,p2);
	c21 = add(p3,p4);
	c22 = sub(sub(add(p5, p1), p3), p7);
	for (int i = 0; i < n1; i++){
		for (int j = 0; j < n1; j++){
			C[i][j] = c11[i][j];
			C[i][j+n1] = c12[i][j];
			C[i + n1][j] = c21[i][j];
			C[i + n1][j + n1] = c22[i][j];
		}
	}
}

int main(){
	int n;
	cin >> n;
	vector<vector<int>> A(n,vector<int>(n,0));
	vector<vector<int>> B(n,vector<int>(n,0));
	for (int i = 0; i < n; i++){
		for (int j = 0; j < n; j++) cin >> A[i][j];
	}
	for (int i = 0; i < n; i++){
		for (int j = 0; j < n; j++) cin >> B[i][j];
	}
	vector<vector<int>> result(n,vector<int>(n,0));
	multiply(A,B,result);
	int size = result.size();
	for (int i = 0; i < size; i++){
		for (int j = 0; j < size; j++) cout << result[i][j] << " ";
		cout << endl;
	}
	system("pause");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值