几种更新策略的比较

本文通过模块化编程构建了一个全连接神经网络,包括layers.py(实现前向传播及ReLU计算)、FullyConNet.py(网络初始化及计算)、策略更新文件(不同更新策略实现)和Solver.py(数据读取及模型测试)。实验展示了各种更新策略在测试集上的性能表现。
摘要由CSDN通过智能技术生成

按照模块化编程,自己写了个全连接的神经网络,一共四个文件,具体介绍如下:

第一个文件是layers.py,具体实现的是简单的前向计算,relu函数的前向传播计算以及relu的反向传播计算:

import numpy as np

def simple_forward(x,w,b):
    output=x.dot(w)+b
    return output

def relu_func(x):
    return np.maximum(x,0)

def relu_forward(x,w,b):
    temp=simple_forward(x,w,b)
    return relu_func(temp)

def relu_backward(dout,x,w,b):
    dw=x.T.dot(dout)
    db=np.sum(dout,axis=0)
    dx=dout.dot(w.T)
    return dx,dw,db

第二个实现的文件是FullyConNet.py,主要完成的是对神经网络的初始化操作,以及前向计算、反向传播以及测试数据集的准确率函数:

import numpy as np
import Strategy as st
from layers import *

class FullyConNet:

    lr_decay=0.95
    iter_per_ann=400
    parameter={}
    layers=[]
    weight_init=2e-2
    update_rule=None
    learning_rate=0
    batch_size=0
    epoch=0
    reg=0
    config={}

    def __init__(self,input_layer,hidden_layer,output_layer,update_rule,learning_rate,batch_size,epoch,reg):
        self.reg=reg
        self.batch_size=batch_size
        self.epoch=epoch
        self.layers=[input_layer]+hidden_layer+[output_layer]
        if(hasattr(st,update_rule)):
            self.update_rule=getattr(st,update_rule)
        length=len(hidden_layer)+1 #6
        for i in range(0,length):#0,1,2,3,4,5
            self.parameter['w'+str(i)]=self.weight_init*np.random.randn(self.layers[i],self.layers[i+1])
            self.parameter['b'+str(i)]=np.zeros(self.layers[i+1])
        for i in self.parameter:
            self.config[i]={
  "learning_rate":learning_rate}

    def forward_process(self,train_data,cache_output=None):
        if(cache_output
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值