Cutting Chains UVA - 818

假设对于每个圆环而言,0表示的是这个圆环是关闭的状态,1表示的是这个圆环是打开的状态,所以如果把n个圆环的状态写在一起,就可以组成一个n位的二进制数,现在再来看看问题的规模,由于n<=15,所以使用枚举法并不会超时,所以就从全0的状态一直枚举到全1的状态,边枚举边判断,首先判断的是除掉当前已经打开的那些圆环之外,每个圆环所连接的其他的未打开的圆环的数目是否会超过2,如果超过2那么肯定是不合理的;然后判断,除去那些已经打开的圆环之外,剩下的这些圆环是否会形成环,如果会形成环那么肯定也是不合理的,在这一轮的判断过程当中,要记录连通分量的个数,如果上述两轮判断都顺利通过,那么现在就找出当前的状态中有多少个圆环是打开状态的,如果打开状态的圆环的数量大于等于连通分量的总的个数减一,说明可以利用当前打开的圆环重新进行连接,否则也是不合法的。具体的思路也就是上面这些了,具体实现见如下代码:

#include<iostream>
#include<vector>
#include<string>
#include<set>
#include<stack>
#include<queue>
#include<map>
#include<algorithm>
#include<cmath>
#include<iomanip>
#include<cstring>
#include<sstream>
#include<cstdio>
#include<deque>
#include<functional>
using namespace std;

int n, Case,connect;
int record[20][20];
bool visit[20];

bool judgeTwo(int state){//判断哪些没有打开的环的分支个数是否大于2
	                     //0 关闭  1 打开
	int amount;
	for (int i = 0; i < n; i++){
		amount = 0;
		for (int j = 0; j < n; j++){
				if (record[i][j]&&(!(state&(1 << i))) && (!(state&(1 << j)))) amount++;
				if (amount > 2) return true;
		}
	}
	return false;
}

bool dfs(int cur,int pre,int state){
	visit[cur] = true;
	for (int i = 0; i < n; i++){
		if (record[cur][i] && (!(state&(1 << i))) && i != pre){
			if (visit[i]) return true;
			if (dfs(i, cur, state)) return true;
		}
	}
	return false;
}

bool isRing(int state){//判断在当前的状态下是否存在环
	memset(visit, 0, sizeof(visit));
	for (int i = 0; i <n; i++){
		if (!visit[i]&&(!(state&(1<<i)))){
			connect++;
			if (dfs(i, -1,state)) return true;
		}
	}
	return false;
}

int getOpen(int state){
	int amount = 0;
	for (int i = 0; i < n; i++){
		if (state&(1 << i)) amount++;
	}
	return amount;
}

int main(){
	Case = 0;
	while (cin >> n){
		if (n == 0) break;
		Case++;
		memset(record, 0, sizeof(record));
		int a, b;
		while (cin >> a >> b){
			if (a == -1 && b == -1) break;
			record[a-1][b-1] = record[b-1][a-1] = 1;
		}
		int ans = 1 << 20;
		for (int state = 0; state < (1 << n); state++){
			connect = 0;
			if (judgeTwo(state) || isRing(state)) continue;
			int temp=getOpen(state);
			if (connect - 1 <= temp)
				ans = min(ans, temp);
		}
		cout <<"Set "<<Case<<": Minimum links to open is "<< ans << endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值