假设对于每个圆环而言,0表示的是这个圆环是关闭的状态,1表示的是这个圆环是打开的状态,所以如果把n个圆环的状态写在一起,就可以组成一个n位的二进制数,现在再来看看问题的规模,由于n<=15,所以使用枚举法并不会超时,所以就从全0的状态一直枚举到全1的状态,边枚举边判断,首先判断的是除掉当前已经打开的那些圆环之外,每个圆环所连接的其他的未打开的圆环的数目是否会超过2,如果超过2那么肯定是不合理的;然后判断,除去那些已经打开的圆环之外,剩下的这些圆环是否会形成环,如果会形成环那么肯定也是不合理的,在这一轮的判断过程当中,要记录连通分量的个数,如果上述两轮判断都顺利通过,那么现在就找出当前的状态中有多少个圆环是打开状态的,如果打开状态的圆环的数量大于等于连通分量的总的个数减一,说明可以利用当前打开的圆环重新进行连接,否则也是不合法的。具体的思路也就是上面这些了,具体实现见如下代码:
#include<iostream>
#include<vector>
#include<string>
#include<set>
#include<stack>
#include<queue>
#include<map>
#include<algorithm>
#include<cmath>
#include<iomanip>
#include<cstring>
#include<sstream>
#include<cstdio>
#include<deque>
#include<functional>
using namespace std;
int n, Case,connect;
int record[20][20];
bool visit[20];
bool judgeTwo(int state){//判断哪些没有打开的环的分支个数是否大于2
//0 关闭 1 打开
int amount;
for (int i = 0; i < n; i++){
amount = 0;
for (int j = 0; j < n; j++){
if (record[i][j]&&(!(state&(1 << i))) && (!(state&(1 << j)))) amount++;
if (amount > 2) return true;
}
}
return false;
}
bool dfs(int cur,int pre,int state){
visit[cur] = true;
for (int i = 0; i < n; i++){
if (record[cur][i] && (!(state&(1 << i))) && i != pre){
if (visit[i]) return true;
if (dfs(i, cur, state)) return true;
}
}
return false;
}
bool isRing(int state){//判断在当前的状态下是否存在环
memset(visit, 0, sizeof(visit));
for (int i = 0; i <n; i++){
if (!visit[i]&&(!(state&(1<<i)))){
connect++;
if (dfs(i, -1,state)) return true;
}
}
return false;
}
int getOpen(int state){
int amount = 0;
for (int i = 0; i < n; i++){
if (state&(1 << i)) amount++;
}
return amount;
}
int main(){
Case = 0;
while (cin >> n){
if (n == 0) break;
Case++;
memset(record, 0, sizeof(record));
int a, b;
while (cin >> a >> b){
if (a == -1 && b == -1) break;
record[a-1][b-1] = record[b-1][a-1] = 1;
}
int ans = 1 << 20;
for (int state = 0; state < (1 << n); state++){
connect = 0;
if (judgeTwo(state) || isRing(state)) continue;
int temp=getOpen(state);
if (connect - 1 <= temp)
ans = min(ans, temp);
}
cout <<"Set "<<Case<<": Minimum links to open is "<< ans << endl;
}
return 0;
}