Moving Pegs UVA - 1533

首先将图形中每个点的位置关系梳理出来,假设每个点可以向6个方向进行移动,可以移动到的位置就记录成对应的数字,不能移动到的位置就记录成-1。记录结束之后,就利用移位操作记录状态,每个数字都占据一位,以1表示该数字是存在的,以0表示是不存在的,然后从初始状态开始bfs,放入队列,每次都从队列中取出队头,作为当前的状态,然后分析每个数字是否存在,如果数字在当前的状态是存在的,就开始判断每个数字是否能够向各个方向移动,移动包含两个点,第一点,数字在当前的方向必须是能够移动的,第二点 ,数字移动的方向上必须存在空位;如果数字能够移动,那么就计算出数字移动之后的状态,如果该状态在之前没有遍历到(也就是之前没有处理过),那么就将当前的状态放入队列,同时要记录移动的状态信息也就是从哪个数字移动到了哪个点,然后要记录长度信息以及更改状态的访问信息,最后递归打印结果即可,具体实现见如下代码:

#include<iostream>
#include<vector>
#include<string>
#include<set>
#include<stack>
#include<queue>
#include<map>
#include<algorithm>
#include<cmath>
#include<iomanip>
#include<cstring>
#include<sstream>
#include<cstdio>
#include<deque>
#include<functional>
using namespace std;

const int maxn = 1 << 15 + 10;
int num;
bool visit[maxn];
int pre[maxn], path[maxn][2],length[maxn];
int state,fin_s,ed_p;
int q[maxn],init;

int pos[15][6]{
	{-1,-1,-1,-1,1,2},
	{-1,0,-1,2,3,4},
	{0,-1,1,-1,4,5},
	{-1,1,-1,4,6,7},
	{1,2,3,5,7,8},
	{2,-1,4,-1,8,9},
	{-1,3,-1,7,10,11},
	{3,4,6,8,11,12},
	{4,5,7,9,12,13},
	{5,-1,8,-1,13,14},
	{-1,6,-1,11,-1,-1},
	{6,7,10,12,-1,-1},
	{7,8,11,13,-1,-1},
	{8,9,12,14,-1,-1},
	{9,-1,13,-1,-1,-1}
};

bool Move(int i,int j){
	if (pos[i][j] < 0 || !(state&(1 << pos[i][j]))) return false;
	while (pos[i][j] >= 0){
		if (!(state&(1 << pos[i][j]))){
			ed_p = pos[i][j];
			return true;
		}
		i = pos[i][j];
	}
	return false;
}

void bfs(){
	int front = 0, rear = 1;
	q[front] = state;
	length[state] = 0;
	visit[state] = true;
	while (front < rear){
		state = q[front];
		if (state == fin_s){
			return;
		}
		for (int i = 0; i < 15; i++){
			if ((1 << i)&state){
				for (int j = 0; j < 6; j++){
					if (Move(i, j)){
						int temp_s = state;
						int from = i;
						int from_t = from;
						while (from_t != ed_p){
							temp_s ^= (1 << from_t);
							from_t = pos[from_t][j];
						}
						temp_s ^= (1 << ed_p);
						if (!visit[temp_s]){
							visit[temp_s] = true;
							q[rear] = temp_s;
							pre[temp_s] = state;
							path[temp_s][0] = from + 1;
							path[temp_s][1] = ed_p + 1;
							length[temp_s] = length[state] + 1;
							rear++;
						}
					}
				}
			}
		}
		front++;
	}
}

void Print(int cur){
	if (length[cur] != 0) Print(pre[cur]);
	if (cur!=init) cout << path[cur][0] << " " << path[cur][1];
	if (cur != fin_s&&cur!=init) cout << " ";
}

int main(){//注意下标从0开始
	int T;
	cin >> T;
	int start_s = (1<<15)-1;	
	while (T--){
		memset(visit, 0, sizeof(visit));
		cin >> num;
		num--;
		fin_s = 1 << num;
		state = start_s;
		state ^= fin_s;
		init = state;
		bfs();
		cout << length[fin_s] << endl;
		Print(fin_s);
		cout << endl;
	}
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值