三门问题(Monty Hall problem)背后的贝叶斯理论

1 前言

三门问题可以说有着各种版本的解释,但我看了几个版本,觉得没有把其中的条件说清楚,所以还是决定按照自己的理解记录一下这个特别有意思的问题。

2 问题简介

三门问题(Monty Hall problem)亦称为蒙提霍尔问题、蒙特霍问题或蒙提霍尔悖论,大致出自美国的电视游戏节目Let’s Make a Deal。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的概率?如果严格按照上述的条件,即主持人清楚地知道,哪扇门后是羊,那么答案是会。不换门的话,赢得汽车的概率是1/3。换门的话,赢得汽车的概率是2/3。

——摘自百度百科

3 直观的解释

这个问题有一个非常直观的理解:如果参赛者换的话,那么参赛者会在最初选择是错误的时候获得汽车;如果参赛者不换的话,那么参赛者会在最初选择是正确的时候获得汽车。
前者是 2 3 \frac{2}{3} 32的概率,后者是 1 3 \frac{1}{3} 31的概率

4 贝叶斯理论的解释

贝叶斯公式是

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

其中, P ( A ∣ B ) P(A|B) P(AB)表示在事件B发生的前提下,事件A发生的概率; P ( B ∣ A ) P(B|A) P(BA)表示在事件A发生的前提下,事件B发生的概率; P ( A ) P(A) P(A)表示事件A发生的概率; P ( B ) P(B) P(B)表示事件B发生的概率。

现在我们假设三扇门分别是A、B、C,选手最初的选择是门A,主持人打开的是门B,那么问题就变成了

P ( 汽 车 在 A 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) P ( 汽 车 在 B 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) P ( 汽 车 在 C 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) \begin{aligned} & P(汽车在A门 | 最初选择A门,主持人打开B门) \\ & P(汽车在B门 | 最初选择A门,主持人打开B门) \\ & P(汽车在C门 | 最初选择A门,主持人打开B门) \\ \end{aligned} P(AAB)P(BAB)P(CAB)

三者的大小问题。
接下来要做的工作就是来算一算三者的大小,由贝叶斯公式可得

P ( 汽 车 在 A 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 A 门 ) P ( 汽 车 在 A 门 ) P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) P ( 汽 车 在 B 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 B 门 ) P ( 汽 车 在 B 门 ) P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) P ( 汽 车 在 C 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 C 门 ) P ( 汽 车 在 C 门 ) P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) \begin{aligned} & P(汽车在A门 | 最初选择A门,主持人打开B门)=\frac{P(最初选择A门,主持人打开B门|汽车在A门)P(汽车在A门)}{P(最初选择A门,主持人打开B门)} \\ & P(汽车在B门 | 最初选择A门,主持人打开B门)=\frac{P(最初选择A门,主持人打开B门|汽车在B门)P(汽车在B门)}{P(最初选择A门,主持人打开B门)} \\ & P(汽车在C门 | 最初选择A门,主持人打开B门)=\frac{P(最初选择A门,主持人打开B门|汽车在C门)P(汽车在C门)}{P(最初选择A门,主持人打开B门)} \end{aligned} P(AAB)=P(AB)P(ABA)P(A)P(BAB)=P(AB)P(ABB)P(B)P(CAB)=P(AB)P(ABC)P(C)

好,来看看这些值我们是不是都能算出来。

先从简单的来看

P ( 汽 车 在 A 门 ) = P ( 汽 车 在 B 门 ) = P ( 汽 车 在 C 门 ) = 1 3 P(汽车在A门)=P(汽车在B门)=P(汽车在C门)=\frac{1}{3} P(A)=P(B)=P(C)=31

这个没问题吧?好~再来看稍微复杂一些的。

P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 A 门 ) = 1 2 P(最初选择A门,主持人打开B门|汽车在A门)=\frac{1}{2} P(ABA)=21

汽车在A门的话,主持人可以任意打开B、C门中的一扇,打开B门的概率自然就是 1 / 2 1/2 1/2

P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 B 门 ) = 0 P(最初选择A门,主持人打开B门|汽车在B门)=0 P(ABB)=0

主持人是知道汽车在哪个门的,所以如果汽车在B门,主持人不可能打开B门。

P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 C 门 ) = 1 P(最初选择A门,主持人打开B门|汽车在C门)=1 P(ABC)=1

汽车在C门的话,参赛者选了A门,主持人就只能打开B门了。

最后

P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = 1 2 P(最初选择A门,主持人打开B门)=\frac{1}{2} P(AB)=21

这是为什么?这并不是简单的主持人在B、C门中随机打开一扇门的问题,主持人是知道汽车在哪扇门的,那么这个 1 / 2 1/2 1/2是怎么来的?请看下图~

三门问题分析图

所以

P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = 1 6 ⋅ ( 1 + 0 + 1 + 0 + 1 2 + 1 2 ) = 1 2 P(最初选择A门,主持人打开B门)=\frac{1}{6}\cdot(1+0+1+0+\frac{1}{2}+\frac{1}{2})=\frac{1}{2} P(AB)=61(1+0+1+0+21+21)=21

这其实也可以用全概率来解释,得到的结果都是一样的。

P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 A 门 ) ⋅ P ( 汽 车 在 A 门 ) + P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 B 门 ) ⋅ P ( 汽 车 在 B 门 ) + P ( 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ∣ 汽 车 在 C 门 ) ⋅ P ( 汽 车 在 C 门 ) = 1 2 ⋅ 1 3 + 0 ⋅ 1 3 + 1 ⋅ 1 3 = 1 2 \begin{aligned} & P(最初选择A门,主持人打开B门)= \\ & P(最初选择A门,主持人打开B门|汽车在A门) \cdot P(汽车在A门)+ \\ & P(最初选择A门,主持人打开B门|汽车在B门) \cdot P(汽车在B门)+ \\ & P(最初选择A门,主持人打开B门|汽车在C门) \cdot P(汽车在C门) \\ & = \frac{1}{2} \cdot \frac{1}{3}+0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = \frac{1}{2} \end{aligned} P(AB)=P(ABA)P(A)+P(ABB)P(B)+P(ABC)P(C)=2131+031+131=21

好了,至此,贝叶斯公式右边的所有值我们都知道了,来算一下最终结果

P ( 汽 车 在 A 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = ( 1 / 2 ) ⋅ ( 1 / 3 ) 1 / 2 = 1 3 P ( 汽 车 在 B 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = 0 ⋅ ( 1 / 3 ) 1 / 2 = 0 P ( 汽 车 在 C 门 ∣ 最 初 选 择 A 门 , 主 持 人 打 开 B 门 ) = 1 ⋅ ( 1 / 3 ) 1 / 2 = 2 3 \begin{aligned} & P(汽车在A门 | 最初选择A门,主持人打开B门)=\frac{(1/2) \cdot (1/3)}{1/2}=\frac{1}{3} \\ & P(汽车在B门 | 最初选择A门,主持人打开B门)=\frac{0 \cdot (1/3)}{1/2}=0 \\ & P(汽车在C门 | 最初选择A门,主持人打开B门)=\frac{1 \cdot (1/3)}{1/2}=\frac{2}{3} \end{aligned} P(AAB)=1/2(1/2)(1/3)=31P(BAB)=1/20(1/3)=0P(CAB)=1/21(1/3)=32

所以,在最初选择A门,主持人打开B门的前提下,汽车在C门的概率是最高的,故此时参赛者应该换成C门。

以上是以参赛者最初选A门,主持人开B门为例分析的,其它情况下的分析方法相同,结果也是相同的。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七元权

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值