机器学习
文章平均质量分 93
七元权
不会喝酒的程序员不是好的诗人
展开
-
深度学习基础-1
本文介绍了深度学习的基础知识,以图像分类为例,介绍了图像的表示,线性分类器,损失函数,优化算法以及数据处理。原创 2022-11-08 21:33:44 · 1449 阅读 · 0 评论 -
搞懂CRF
文章目录1 前言2 Log-linear model3 MEMM3.1 模型概述3.2 label bias问题4 CRF4.1 模型概述4.2 模型训练4.3 模型解码4.4 小结参考资料1 前言条件随机场(conditional random field, CRF)是在建立序列模型时的常用模块,它的本质就是描述观测到的序列xˉ\bar{x}xˉ对应的状态序列yˉ\bar{y}yˉ的概率,记作P(yˉ∣xˉ)P(\bar{y}|\bar{x})P(yˉ∣xˉ)。这里字符上的横线表示这是一个序列,下原创 2022-02-08 17:10:15 · 2920 阅读 · 0 评论 -
Yolo系列知识点梳理(Yolov1-v5)
文章目录1 概述2 Yolo系列模型2.1 基石 - Yolov12.1.1 Yolov1的网络结构1 概述Yolo系列的模型是大多数做目标检测的图像算法工程师都在使用的,使用时经常也是先用了看看效果再说,如果效果不错,有时间再回头来研究一下模型,有时甚至就忘了回过头来细究。这篇文章就是一个回头的产物。Yolo的每一个系列都令人惊艳,本文综合了原始论文和网上各家的一些说法,把Yolo每个系列究竟产出了一些什么做一个系统的梳理,也方便我以后的再回头。如果Yolo之后有人继续更新下去,本文也会尽量做到继原创 2021-10-23 20:00:51 · 7940 阅读 · 0 评论 -
speech production model
文章目录1 概述2 source model3 filter model4 小结参考资料1 概述本文的目的是为了厘清在speech production model中source model和filter model所扮演的角色,不涉及具体公式的推导或者模型的建立,只是为了把这两个model在干什么事情说明白。文中用到的图片均来自底部参考资料,如有侵权,必定删除。如下图1-1所示,speech production model把人发声的过程分成了三大块,分别是power,source和filter。原创 2021-09-04 21:57:30 · 532 阅读 · 0 评论 -
搞懂语音去噪
文章目录1 概述2 传统语音去噪2.1 谱减法2.2 滤波法3 深度语音去噪1 概述2 传统语音去噪2.1 谱减法2.2 滤波法3 深度语音去噪原创 2021-09-03 11:32:51 · 10312 阅读 · 2 评论 -
搞懂HMM
文章目录1 概述2 符号说明3 Evaluation4 Learning5 Decoding参考资料1 概述本文是B站上机器学习-白板推导系列(十四)-隐马尔可夫模型HMM的学习笔记,UP主讲得实在是太清楚了,赶紧记录下来,以防之后忘记。2 符号说明3 Evaluation4 Learning5 Decoding参考资料[1] 机器学习-白板推导系列(十四)-隐马尔可夫模型HMM......原创 2021-08-22 12:08:03 · 1051 阅读 · 1 评论 -
机智的ensemble
1 引言本文主要结合了李宏毅的机器学习课程之Ensemble和周志华的《机器学习》西瓜书两者的说法,对ensemble这一竞赛利器做了总结。 Ensemble主要可以分为bagging和boosting两种方法。其中,bagging适用于基模型复杂度比较高的情况(如树模型),其目的是为了减小variance,即阻止过拟合的情况。而boosting则是适用于基模型是弱学习器的情况,其目的是减小...原创 2018-03-04 22:45:33 · 636 阅读 · 0 评论 -
主成分分析(PCA)和基于核函数的主成分分析(KPCA)入门
主成分分析是在做特征筛选时的重要手段,这个方法在大部分的书中都只是介绍了步骤方法,并没有从头到尾把这个事情给说清楚。本文的目的是把PCA和KPCA给说清楚。主要参考了YouTube上李政轩的Principal Component Analysis and Kernel Principal Component Analysis这个视频(强烈推荐看一下)。原创 2017-08-23 19:59:25 · 45995 阅读 · 24 评论 -
神经网络中BP(back propagation)到底在干些什么
想要理解神经网络的工作原理,反向传播(BP)是必须搞懂的东西。BP其实并不难理解,说白了就是用链式法则(chain rule)算算算。本文试图以某个神经网络为例,尽可能直观,详细,明了地说明反向传播的整个过程。原创 2017-09-03 15:09:55 · 2118 阅读 · 0 评论 -
从拉格朗日乘子法到SVM
本文主要是讲了如何构建SVM的模型,并利用KKT条件构造其对偶型,从而求解问题,并讲述了SVM的硬间隔,软间隔和核函数三个境界。主要参考了周志华的《机器学习》,并在其中补充了自己的想法。由于内容较多,所以很多细节都省略掉了,只留下了整体的框架,该说的东西应该都说了。原创 2017-09-08 08:52:30 · 5677 阅读 · 3 评论 -
逻辑回归(logistic regression)的本质——极大似然估计
逻辑回归是分类当中极为常用的手段,因此,掌握其内在原理是非常必要的。我会争取在本文中尽可能简明地展现逻辑回归(logistic regression)的整个推导过程。原创 2017-08-14 19:36:24 · 106572 阅读 · 31 评论 -
利用随机森林对特征重要性进行评估
随机森林是以决策树为基学习器的集成学习算法。随机森林非常简单,易于实现,计算开销也很小,更令人惊奇的是它在分类和回归上表现出了十分惊人的性能,因此,随机森林也被誉为“代表集成学习技术水平的方法”。 本文是对随机森林如何用在特征选择上做一个简单的介绍。原创 2017-08-18 16:22:48 · 169210 阅读 · 94 评论 -
决策树相关知识小结
本文是一篇关于决策树方面知识的小结,不包含具体的例子(想看例子推荐文献[1]的第4章),主要总结了ID3、C4.5和CART树三者的区别,剪枝处理,连续值和缺失值的处理。原创 2017-08-08 14:30:10 · 765 阅读 · 0 评论 -
用多元线性回归预测网页访问量(R语言)
前言该问题来源于《机器学习:实用案例解析》中的第5章。在书中,已经对该问题给出了一种解决方案,但是我觉得写的还是太简略了一些,没有把考虑问题的整个思路给写出来,所以,在这里给出我的一些想法。问题简述我们的任务就是根据给定的数据集(TOP1000的互联网站数据)建立一个回归模型,然后根据任意给定的一组网站数据,预测出该网站的网页访问量。解决方案这里我们针对的是多元线性回归这个方法,并不是针对预测网页访原创 2017-08-03 22:22:48 · 4035 阅读 · 1 评论