前言
想要理解神经网络的工作原理,反向传播(BP)是必须搞懂的东西。BP其实并不难理解,说白了就是用链式法则(chain rule)算算算。本文试图以某个神经网络为例,尽可能直观,详细,明了地说明反向传播的整个过程。
正向传播
在反向传播之前,必然是要有正向传播的。正向传播时的所有参数都是预先随机取的,没人能说这样的参数好不好,得要试过才知道,试过之后,根据得到的结果与目标值的差距,再通过反向传播取修正各个参数。下图就是一个神经网络,我们以整个为例子来说明整个过程

我懒,此图取自参考文献[1],图中的各个符号说明如下(顺序从下往上):
x
i
x_i
xi:输入样本中的第
i
i
i个特征的值
v
i
h
v_{ih}
vih:
x
i
x_i
xi与隐层第
h
h
h个神经元连接的权重
α
h
\alpha_h
αh:第h个隐层神经元的输入,
α
h
=
∑
i
=
1
d
v
i
h
x
i
\alpha_h=\sum_{i=1}^d v_{ih}x_i
αh=∑i=1dvihxi
b
h
b_h
bh:第h个隐层神经元的输出,某个神经元的输入和输出有关系
f
(
α
h
)
=
b
h
f(\alpha_h)=b_h
f(αh)=bh,其中
f
(
x
)
f(x)
f(x)为激活函数,比如Sigmoid函数
f
(
x
)
=
1
1
+
e
−
x
f(x)=\dfrac{1}{1+e^{-x}}
f(x)=1+e−x1
w
h
j
w_hj
whj:隐层第
h
h
h个神经元和输出层第
j
j
j个神经元连接的权重
β
j
\beta_j
βj:输出层第
j
j
j个神经元的输入,
β
j
=
∑
h
=
1
q
w
h
j
b
h
\beta_j=\sum_{h=1}^q w_{hj}b_h
βj=∑h=1qwhjbh
y
j
y_j
yj:第
j
j
j个输出层神经元的输出,
f
(
β
j
)
=
y
j
f(\beta_j)=y_j
f(βj)=yj,
f
(
x
)
f(x)
f(x)为激活函数
为了方便书写,我们假设截距项bias已经在参数
w
w
w和
v
v
v之中了,也就是说在输入数据的时候,我们增添了一个
x
0
=
1
x_0=1
x0=1,由于我懒,图中没有画出来,但心里要清楚这一点。
相信看了图之后,神经网络的正向传播就相当简单明了了,不过,这里我还是啰嗦一句,举个例子,比如输出
y
j
y_j
yj的计算方法为
y j = f ( β j ) = f ( ∑ h = 1 q w h j b h ) = f ( ∑ h = 1 q w h j f ( α h ) ) = f ( ∑ h = 1 q w h j f ( ∑ i = 1 d v i h x i ) ) y_j=f(\beta_j)=f(\sum_{h=1}^q w_{hj}b_h)=f(\sum_{h=1}^q w_{hj}f(\alpha_h))=f(\sum_{h=1}^q w_{hj}f(\sum_{i=1}^d v_{ih}x_i)) yj=f(βj)=f(h=1∑qwhjbh)=f(h=1∑qwhjf(αh))=f(h=1∑qwhjf(i=1∑dvihxi))
反向传播
好了,通过正向传播,我们就已经得到了
l
l
l个
y
y
y的值了,将它们与目标值
t
t
t,也就是我们期望它们成为的值作比较,并放入损失函数中,记作
L
L
L。
损失
L
L
L可以自行选择,比如常见的均方误差
L
=
1
2
∑
j
=
1
l
(
y
j
−
t
j
)
2
L=\dfrac{1}{2}\sum_{j=1}^l (y_j - t_j)^2
L=21∑j=1l(yj−tj)2
利用这个误差,我们将进行反向传播,以此来更新参数
w
w
w和
v
v
v。更新时,我们采用的是梯度下降法,也就是
{ w : = w + Δ w v : = v + Δ v \begin{cases}w := w + \Delta w \\ v := v + \Delta v\end{cases} {w:=w+Δwv:=v+Δv
其中,
Δ
w
=
−
η
∂
L
∂
w
\Delta w = -\eta \dfrac{\partial L}{\partial w}
Δw=−η∂w∂L,
Δ
v
=
−
η
∂
L
∂
v
\Delta v = -\eta \dfrac{\partial L}{\partial v}
Δv=−η∂v∂L,
η
\eta
η为学习率。
下面要做的工作就是计算出每个参数的梯度,这也就是链式法则发挥作用的地方了。
比如,我们要计算
w
h
j
w_{hj}
whj。从网络结构中不难看出
w
h
j
w_{hj}
whj影响了
β
j
\beta_j
βj从而影响了
y
j
y_j
yj,最终影响了
L
L
L所以我们有
Δ w h j = − η ∂ β j ∂ w h j ∂ y j ∂ β j ∂ L ∂ y j \Delta w_{hj}=-\eta \dfrac{\partial \beta_j}{\partial w_{hj}} \dfrac{\partial y_j}{\partial \beta_j} \dfrac{\partial L}{\partial y_j} Δwhj=−η∂whj∂βj∂βj∂yj∂yj∂L
只要确定了损失函数
L
L
L和激活函数
f
(
x
)
f(x)
f(x),上面所有的都是可以算的,而且
∂
β
h
∂
w
h
j
=
b
h
\dfrac{\partial \beta_h}{\partial w_{hj}} = b_h
∂whj∂βh=bh这点是显而易见的。并且,
∂
y
j
∂
β
j
=
∂
f
(
β
j
)
∂
β
j
\dfrac{\partial y_j}{\partial \beta_j} = \dfrac{\partial f(\beta_j)}{\partial \beta_j}
∂βj∂yj=∂βj∂f(βj)就是激活函数的导数。
同理,
v
i
h
v_{ih}
vih影响了
α
h
\alpha_h
αh,从而影响了
b
h
b_h
bh,从而影响了
β
1
\beta_{1}
β1,
β
2
\beta_{2}
β2,…,
β
l
\beta_{l}
βl,从而影响了
y
1
y_1
y1,
y
2
y_2
y2,…,
y
l
y_l
yl,最终影响了
L
L
L。
Δ v i h = − η ∂ α h ∂ v i h ∂ b h ∂ α h ∑ j = 1 l ( ∂ β j ∂ b h ∂ y j ∂ β j ∂ L ∂ y j ) \Delta v_{ih} = -\eta \dfrac{\partial \alpha_h}{\partial v_{ih}} \dfrac{\partial b_h}{\partial \alpha_h}\sum_{j=1}^l (\dfrac{\partial \beta_j}{\partial b_h} \dfrac{\partial y_j}{\partial \beta_j} \dfrac{\partial L}{\partial y_j}) Δvih=−η∂vih∂αh∂αh∂bhj=1∑l(∂bh∂βj∂βj∂yj∂yj∂L)
其中,
∂
α
h
∂
v
i
h
=
x
i
\dfrac{\partial \alpha_h}{\partial v_{ih}}=x_i
∂vih∂αh=xi,
∂
β
j
∂
b
h
=
w
h
j
\dfrac{\partial \beta_j}{\partial b_h} = w_{hj}
∂bh∂βj=whj,
∂
y
j
∂
β
j
=
∂
f
(
β
j
)
∂
β
j
\dfrac{\partial y_j}{\partial \beta_j} = \dfrac{\partial f(\beta_j)}{\partial \beta_j}
∂βj∂yj=∂βj∂f(βj)和
∂
b
h
∂
α
h
=
∂
f
(
α
h
)
∂
α
h
\dfrac{\partial b_h}{\partial \alpha_h} = \dfrac{\partial f(\alpha_h)}{\partial \alpha_h}
∂αh∂bh=∂αh∂f(αh)是激活函数的导数。
至此,我们已经可以算出
Δ
w
\Delta w
Δw和
Δ
v
\Delta v
Δv,从而更新参数了。
关于激活函数的几点说明
从推出的公式中不难看出,随着反向传播向输出层这个方向的推进,激活函数的影响也就越来越来了。通俗一点来说,在计算 Δ w h j \Delta w_{hj} Δwhj,我们只乘了一个激活函数的导数,然而在计算 Δ v i h \Delta v_{ih} Δvih时,我们乘了多个激活函数的导数。
Δ w h j = − η ∂ β j ∂ w h j f ′ ( β j ) ∂ L ∂ y j \Delta w_{hj}=-\eta \dfrac{\partial \beta_j}{\partial w_{hj}} f'(\beta_j) \dfrac{\partial L}{\partial y_j} Δwhj=−η∂whj∂βjf′(βj)∂yj∂L
Δ v i h = − η ∂ α h ∂ v i h f ′ ( α h ) ∑ j = 1 l ( ∂ β j ∂ b h f ′ ( β j ) ∂ L ∂ y j ) \Delta v_{ih} = -\eta \dfrac{\partial \alpha_h}{\partial v_{ih}} f'(\alpha_h) \sum_{j=1}^l (\dfrac{\partial \beta_j}{\partial b_h} f'(\beta_j) \dfrac{\partial L}{\partial y_j}) Δvih=−η∂vih∂αhf′(αh)j=1∑l(∂bh∂βjf′(βj)∂yj∂L)
不难推断出,如果隐层的层数更多的话,激活函数的影响还要更大。
一个比较传统的激活函数时Sigmoid函数,其图像如下所示。

不难发现,当
x
x
x比较大的时候,或比较小的时候,
f
′
(
x
)
f'(x)
f′(x)是趋近于0的,当神经网络的层数很深的时候,这么多个接近0的数相乘就会导致传到输出层这边的时候已经没剩下多少信息了,这时梯度对模型的更新就没有什么贡献了。那么大多数神经元将会饱和,导致网络就几乎不学习。这其实也是Sigmoid函数现在在神经网络中不再受到青睐的原因之一。
另一个原因是Sigmoid 函数不是关于原点中心对称的,这会导致梯度在反向传播过程中,要么全是正数,要么全是负数。导致梯度下降权重更新时出现 Z 字型的下降。
所以,就出现了ReLU这个激活函数
f
(
x
)
=
max
(
0
,
x
)
f\left( x\right) =\max \left( 0,x\right)
f(x)=max(0,x),其图像如下图所示。

ReLU 对于 SGD 的收敛有巨大的加速作用,而且只需要一个阈值就可以得到激活值,而不用去算一大堆复杂的(指数)运算。
不过,由于它左半边的状态,ReLU在训练时比较脆弱并且可能“死掉”。
因此,人们又研究出了Leaky ReLU,PReLU等等的激活函数。这里不展开讨论。
参考文献
[1] 周志华. 机器学习 : = Machine learning[M]. 清华大学出版社, 2016.
[2] http://cs231n.github.io/neural-networks-1/
[2] http://www.jianshu.com/p/6df4ab7c235c