Problem H
Maximum sum on a torus
Input: Standard Input
Output: Standard Output
A grid that wraps both horizontally and vertically is called a torus. Given a torus where each cell contains an integer, determine the sub-rectangle with the largest sum. The sum of a sub-rectangle is the sum of all the elements in that rectangle. The grid below shows a torus where the maximum sub-rectangle has been shaded.
1 | -1 | 0 | 0 | -4 |
2 | 3 | -2 | -3 | 2 |
4 | 1 | -1 | 5 | 0 |
3 | -2 | 1 | -3 | 2 |
-3 | 2 | 4 | 1 | -4 |
Input
The first line in the input contains the number of test cases (at most 18). Each case starts with an integer N (1≤N≤75) specifying the size of the torus (always square). Then follows N lines describing the torus, each line containing N integers between -100 and 100, inclusive.
Output
For each test case, output a line containing a single integer: the maximum sum of a sub-rectangle within the torus.
Sample Input Output for Sample Input
2 5 1 -1 0 0 -4 2 3 -2 -3 2 4 1 -1 5 0 3 -2 1 -3 2 -3 2 4 1 -4 3 1 2 3 4 5 6 7 8 9 | 15 45 |
Problem setter: Jimmy Mårdell
Special Thanks: Derek Kisman, Md. Kamruzzaman
题意:环形矩阵上的最大子矩阵和。
思路:先复制三个矩阵拼接成一个大的矩阵,然后枚举所求最大子矩阵在第一个矩阵中的左上角,再通过动态规划的方法求出长宽不大于N的最大子矩阵,各种枚举情况中的最大和即为所求解。
#include<iostream>
#include<cstring>
#include<string>
using namespace std;
int arry[1010][1010];
int main()
{
string str1,str2;
while(getline(cin,str1))
{
getline(cin,str2);
int i,j,k;
memset(arry,0,sizeof(arry));
int len1=str1.size(),len2=str2.size();
for(i=1;i<=len1;i++)
{
for(j=1;j<=len2;j++)
{
if(str1[i-1]==str2[j-1]) arry[i][j]=arry[i-1][j-1]+1;
else arry[i][j]=max(arry[i-1][j],arry[i][j-1]);
}
}
cout<<arry[len1][len2]<<endl;
}
return 0;
}