描述
You are given an N × N matrix. At the beginning every element is 0. Write a program supporting 2 operations:
1. Add x y value: Add value to the element Axy. (Subscripts starts from 0
2. Sum x1 y1 x2 y2: Return the sum of every element Axy for x1 ≤ x ≤ x2, y1 ≤ y ≤ y2.
输入
The first line contains 2 integers N and M, the size of the matrix and the number of operations.
Each of the following M line contains an operation.
1 ≤ N ≤ 1000, 1 ≤ M ≤ 100000
For each Add operation: 0 ≤ x < N, 0 ≤ y < N, -1000000 ≤ value ≤ 1000000
For each Sum operation: 0 ≤ x1 ≤ x2 < N, 0 ≤ y1 ≤ y2 < N
输出
For each Sum operation output a non-negative number denoting the sum modulo 109+7.
5 8 Add 0 0 1 Sum 0 0 1 1 Add 1 1 1 Sum 0 0 1 1 Add 2 2 1 Add 3 3 1 Add 4 4 -1 Sum 0 0 4 4
1 2 3
https://hihocoder.com/discuss/question/4956
这是一道非常经典的二维树状数组(Binary Indexed Tree)的题目。树状数组与线段树有着相同的很优秀的时间复杂度(一般是O(logN)完成某些修改、查询操作),同时更容易实现,并且往往复杂度的常数更小。
我们首先来看一下一维数状数组的问题。注意一下对于数状数组的讨论中,数组下标都是从1开始的。
假设我们有一个数组A[1..N]。一维树状数组可以支持对A[]进行如下操作:
1. add(index, val)
: 修改A[index]的值,累加val,也即A[index] += val
2. sum(index)
: 计算A[1] + A[2] + ... A[index]。
并且以上两种操作都能在O(logN)之内完成。注意我们能O(logN)求前缀和,意味着也可以O(logN)求区间和:A[i] + A[i+1] + ... + A[j],只需要求sum(j) - sum(i-1)。而我们能对A[index]累加val,意味着实际上我们可以任意修改A[]每一个元素的值。
实际上,一维数状数组就是一个一维数组,我们不妨称之为BIT[1..N],它的每一个元素与A[]有如下对应关系:
BIT[1] = A[1]
BIT[2] = A[2] + A[1]
BIT[3] = A[3]
BIT[4] = A[4] + A[3] + A[2] + A[1]
BIT[5] = A[5]
BIT[6] = A[6] + A[5]
BIT[7] = A[7]
BIT[8] = A[8] + A[7] + ... A[2] + A[1]
形象一点讲就是:
0. 如果i是奇数,那么BIT[i] = A[i]
1. 如果i是2的倍数但不是4的倍数,那么BIT[i] = A[i] + A[i-1] (从A[i]开始2个数的和)
2. 如果i是4的倍数但不是8的倍数,那么BIT[i] = A[i] + A[i-1] + A[i-2] + A[i-3] (从A[i]开始4个数的和)
....
k. 如果i是2^k的倍数但不是2^(k+1)的倍数,那么BIT[i] 是 从A[i]开始2^k个数的和。
注意!划重点!对于一个整数x,BIT[x]的项数可以用一个非常简洁的函数求得,我们称之为lowbit,lowbit(x) = x & (-x)。其中&是与运算。用代码的表示就是:
int lowbit(int x) {
return x & (-x);
}
假设我们已经有了BIT[]数组,我们就可以把sum(A[1..index])表示若干个(不超过log(index)个)BIT[]的元素之和:
sum(A[1..7]) = BIT[7] + BIT[6] + BIT[4]
sum(A[1..8]) = BIT[8]
sum(A[1..6]) = BIT[6] + BIT[4]
具体方法就是,我们要求sum(A[1..x]),我们先把BIT[x]加进去。我们知道BIT[x]是从A[x]开始的lowbit(x)个元素之和,也就是BIT[x] = A[x] + A[x-1] + ... + A[x - lowbit(x) + 1],那么余下还没加的就是sum(A[1..(x - lowbit(x))]。于是我们再把BIT[x-lowbit(x)]加进去,…… 这样递归的把一个个BIT[i]加进去,直到这些BIT[i]完全覆盖了sum(A[1..x])。
代码如下:
int sum(int x) {
int ret = 0;
while(x > 0) {
ret += BIT[x]);
x -= lowbit(x);
}
return ret;
}
最后我们还剩下两个问题,对于给定的A[1..N]如何求出BIT[1..N],以及当进行add(index, val)操作时,如何更新BIT[]数组。
我们不妨设一开始A[]数组每个元素都是0,(这时BIT自然也是全0),对于指定的A[1..N]是经过N个add操作达成的,这样我们就只用解决一个问题:add操作。
当我们改变A[x]的值时,显然对于所有包含A[x]的BIT[i]都需要一起做出修改。例如修改了A[3],那么BIT[3], BIT[4], BIT[8]都要一起修改。如果我们需要修改的BIT元素太多,或者求出哪些元素要修改的复杂度太高,都会影响到add操作的复杂度。
首先我们分析一下哪些BIT的值要修改。我们再回顾一下这个图:
不难发现当我们修改A[x]时,恰好是BIT[x]以及BIT[x]的所有祖先都要修改。
注意!划重点! BIT[x]的父节点是BIT[x + lowbit(x)]。所以add(x, val)用代码表示如下:
void add(x, val) {
while(x <= N) {
BIT[x] += val;
x += lowbit(x);
}
}
以上我们就搞定了一维树状数组,有没有发现代码都非常短 :D
下面我将一维树状数组扩展到二维。
假设我们有二维数组A[1..N][1..N],二维树状数组可以支持对A[][]进行如下操作:
1. add(x, y, val)
: A[x][y] += val
2. sum(x, y)
: 求和sum(A[1..x][1..y])
和一维情况类似,能支持以上两个操作实际就能支持任意修改A[x][y]的值以及求一个子矩阵A[a..b][c..d]的和。
二维树状数组以上两个操作的复杂度都是O(logNlogN)的。
二维树状数组BIT2[x][y]与A[][]的对应关系如下图:
直观理解就是x坐标和y坐标分别是一个一维树状数组,假设一维情况中BIT[x]对应的是A[i1], A[i2] ... A[ik], BIT[y]对应的是A[j1], A[j2], ... A[jt]。那么BIT2[x][y] 相当于笛卡尔积 {i1, i2, ... ik} x {j1, j2, ... jt}:
BIT2][x][y] = ΣA[i][j] | {i in {i1 ... ik}且 j in {j1 ... jt}}
于是add(x, y, val)可以用一个二重循环实现:
void add(int x, int y, int val) {
for(int i = x; i <= N; i += lowbit(i)) {
for(int j = y; j <= N; j += lowbit(j)) {
BIT2[i][j] += val;
}
}
}
sum(x, y)求和也可以用一个二重循环实现:
int sum(int x, int y) {
int ret = 0;
for(int i = x; i > 0; i -= lowbit(i)) {
for(int j = y; j > 0; j -= lowbit(j)) {
ret += BIT2[i][j];
}
}
return ret;
}
package l172;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(),m = sc.nextInt();
int[][] bit = new int[n+1][n+1];
while(m-- > 0) {
String s = sc.next();
if("Add".equals(s)) {
add(bit, n, 1+sc.nextInt(), 1+sc.nextInt(), sc.nextInt());
} else {
int a=sc.nextInt(), b=sc.nextInt(), c=sc.nextInt(), d=sc.nextInt();
int ans = sum(bit, n, 1+c, 1+d) - sum(bit, n, c+1, b) - sum(bit, n, a, d+1) + sum(bit, n, a, b);
System.out.println((ans + 1000000007) % 1000000007);
}
}
}
public static void add(int[][]bit, int N, int x, int y, int val) {
for(int i=x; i<=N; i+=lowbit(i)) {
for(int j=y; j<=N; j+=lowbit(j)) {
bit[i][j] += val;
}
}
}
// 累加到0,0位置的sum
public static int sum(int[][]bit, int N, int x, int y) {
int ret = 0;
for(int i=x; i>0; i-=lowbit(i)) {
for(int j=y; j>0; j-=lowbit(j)) {
ret += bit[i][j];
ret %= 1000000007;
}
}
return ret;
}
public static int lowbit(int x) {
return x & (-x);
}
}