In a directed graph, we start at some node and every turn, walk along a directed edge of the graph. If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.
Now, say our starting node is eventually safe if and only if we must eventually walk to a terminal node. More specifically, there exists a natural number K so that for any choice of where to walk, we must have stopped at a terminal node in less than K steps.
Which nodes are eventually safe? Return them as an array in sorted order.
The directed graph has N nodes with labels 0, 1, ..., N-1, where N is the length of graph. The graph is given in the following form: graph[i] is a list of labels j such that (i, j) is a directed edge of the graph.
Example: Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]] Output: [2,4,5,6] Here is a diagram of the above graph.

Note:
graphwill have length at most10000.- The number of edges in the graph will not exceed
32000. - Each
graph[i]will be a sorted list of different integers, chosen within the range[0, graph.length - 1].
思路:用出度,入度的思想来考虑,结合BFS
class Solution:
def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
n = len(graph)
outDegree = [0]*n
zero_out = []
point2 = [set() for _ in range(len(graph))]
for i,a in enumerate(graph):
if not a: zero_out.append(i)
outDegree[i] += len(a)
for v in a: point2[v].add(i)
mark = [False]*len(graph)
while zero_out:
t = zero_out.pop(0)
mark[t] = True
for s in point2[t]:
outDegree[s] -= 1
if outDegree[s]==0:
zero_out.append(s)
return [i for i in range(n) if mark[i]]

本文介绍了一种算法,用于在有向图中找到所有最终安全节点的方法。通过使用出度和入度的概念,并结合广度优先搜索(BFS),文章详细解释了如何确定从哪些节点出发可以在有限步内到达一个终止节点。
1097

被折叠的 条评论
为什么被折叠?



