870. Advantage Shuffle

30 篇文章 0 订阅

Given two arrays A and B of equal size, the advantage of A with respect to B is the number of indices i for which A[i] > B[i].

Return any permutation of A that maximizes its advantage with respect to B.

 

Example 1:

Input: A = [2,7,11,15], B = [1,10,4,11]
Output: [2,11,7,15]

Example 2:

Input: A = [12,24,8,32], B = [13,25,32,11]
Output: [24,32,8,12]

 

Note:

  1. 1 <= A.length = B.length <= 10000
  2. 0 <= A[i] <= 10^9
  3. 0 <= B[i] <= 10^9

分别排序,优先用a的小的处理b的小的,反正最后要的是个数

注意b排序前先求出排序后的index变化

class Solution:
    def advantageCount(self, a, b):
        """
        :type A: List[int]
        :type B: List[int]
        :rtype: List[int]
        """
        b_idx = sorted(range(len(b)), key=lambda k:b[k])
        a.sort()
        b.sort()
        res=[]
        not_used=[]
        
        j=0
        for i in range(len(b)):
            while j<len(a) and a[j]<=b[i]: 
                not_used.append(a[j])
                j+=1
            if j==len(a): break
            res.append(a[j])
            j+=1
        a=res+not_used
        
        a2=[-1]*len(a)
        for v, i in zip(a, b_idx):
            a2[i]=v
        return a2
    

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值