2022CSP提高组第二题策略游戏题解

题目描述

小 L 和小 Q 在玩一个策略游戏。

有一个长度为 n 的数组 A 和一个长度为 m 的数组 B,在此基础上定义一个大小为 n×m 的矩阵 C,满足 Cij=Ai×Bj​。所有下标均从 1 开始。

游戏一共会进行 q 轮,在每一轮游戏中,会事先给出 4 个参数 l1,r1,l2,r2​,满足 1≤l1≤r1≤n、1≤l2≤r2≤m。

游戏中,小 L 先选择一个 l1∼r1​ 之间的下标 x,然后小 Q 选择一个 l2∼r2​ 之间的下标 y。定义这一轮游戏中二人的得分是 Cxy。

小 L 的目标是使得这个得分尽可能大,小 Q 的目标是使得这个得分尽可能小。同时两人都是足够聪明的玩家,每次都会采用最优的策略。

请问:按照二人的最优策略,每轮游戏的得分分别是多少?

输入格式

第一行输入三个正整数 n,m,q,分别表示数组 A,数组 B 的长度和游戏轮数。

第二行:n 个整数,表示 Ai,分别表示数组 A 的元素。

第三行:m 个整数,表示 Bi​,分别表示数组 B 的元素。

接下来 q 行,每行四个正整数,表示这一次游戏的 l1,r1,l2,r2l1​,r1​,l2​,r2​。

输出格式

输出共 q 行,每行一个整数,分别表示每一轮游戏中,小 L 和小 Q 在最优策略下的得分。

输入输出样例

输入 #1

3 2 2
0 1 -2
-3 4
1 3 1 2
2 3 2 2

输出 #1

0
4

输入 #2

6 4 5
3 -1 -2 1 2 0
1 2 -1 -3
1 6 1 4
1 5 1 4
1 4 1 2
2 6 3 4
2 5 2 3

输出 #2

0
-2
3
2
-1

说明/提示

【样例解释 #1】

在第一轮游戏中,无论小 L 选取的是 x=2 还是 x=3,小 Q 都有办法选择某个 y 使得最终的得分为负数。因此小 L 选择 x=1 是最优的,因为这样得分一定为 0。

而在第二轮游戏中,由于小 L 可以选 x=2,小 Q 只能选 y=2,如此得分为 4。

【样例 #3】

见附件中的 game/game3.ingame/game3.ans

【样例 #4】

见附件中的 game/game4.ingame/game4.ans

【数据范围】

对于所有数据,1≤n,m,q≤1e5,−10e9≤Ai,Bi≤10e9。对于每轮游戏而言,1≤l1≤r1≤n,1≤l2≤r2≤m。

测试点编号 n,m,q≤ 特殊条件
1 200 1, 2
2 200 1
3 200 2
4∼5 200
6 1000 1, 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值