线段树入门

问题引入:

有一个长度为 n n n的数组 A n A_n An,对数组进行 m m m次操作,每次操作为下面两种之一:
1、将第 x x x个数加1
2、求 [ x , y ] [x,y] [x,y]的区间和

这个问题可以用暴力或者前缀和来解决,但是暴力求和复杂度为 O ( n ) O(n) O(n),总复杂度为 O ( m n ) O(mn) O(mn),前缀和的修改复杂度为 O ( n ) O(n) O(n),总复杂度依然为 O ( m n ) O(mn) O(mn),如果 m m m n n n 1 0 5 10^{5} 105以上,无论是暴力算法还是前缀和都会超时,这时,我们就需要用线段树来解决这个问题
首先,使用线段树有一些要求,设我们对区间的运算为 ⊕ ⊕ ,总区间为 A A A,左子区间为 L L L,右子区间为 R R R,那么运用线段树的前提为:
⊕ A = ( ⊕ L ) ⊕ ( ⊕ R ) ⊕A=(⊕L)⊕(⊕R) A=(L)(R)
满足条件的运算如 m a x max max m i n min min s u m sum sum
m a x max max运算举例: A A A区间的最大值等于 L L L区间的最大值和 R R R区间的最大值取 m a x max max运算,原因显然
满足这个条件的运算,就能用线段树优化

一、线段树建树

首先,在例子中,线段树需要维护区间左端点 l l l、区间右端点 r r r和区间和 s u m sum sum
建树的思路,先判断当前结点是否为叶结点,如果是,就直接将 l 、 r 、 s u m l、r、sum lrsum赋值, l 和 r l和r lr都是结点编号,sum就是 a [ l ] a[l] a[l]即结点值。如果不是,将区间分成左右子区间,根据左右子区间计算原区间的值,定义 m i d = l + r 2 mid=\frac{l+r}{2} mid=2l+r,左子区间为 [ l , m i d ] [l,mid] [l,mid],右子区间为 [ m i d + 1 , r ] [mid+1,r] [mid+1,r],设原区间的编号为 i i i左子区间和右子区间的编号分别为 2 i 2i 2i 2 i + 1 2i+1 2i+1
现在就可以写出线段树建树代码了

void build(long long i,long long l,long long r){
    tr[i].l = l;
    tr[i].r = r;
    if (l == r){
        tr[i].sum = a[l];
        return ;
    }
    long long mid = (l + r) >> 1;
    build(i * 2,l,mid);
    build(i * 2 + 1,mid + 1,r);
    tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum;
}

二、单点修改

比较简单,一路递归过去,如果把这个点包含了,就加上对应值,否则返回

void update(long long i,long long x){
    if (tr[i].l > x || tr[i].r < x) return ;
    if (tr[i].r <= x && tr[i].l >= x){
        tr[i].sum++;
        return ;
    }
    long long mid = (tr[i].l + tr[i].r) >> 1;
    if (x <= mid) update(i * 2,x);
    if (x > mid) update(i * 2 + 1,x);
    tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum;
}

三、区间询问

区间询问和单点修改的思路是一样的,如果询问区间完全包含访问区间,就直接把答案加上,如果询问区间和访问区间一点重合都没有,就直接返回 0 0 0,如果有重合就递归访问区间的左右子区间,分别计算左右子区间对询问区间的贡献,加起来就是原区间的贡献了

long long query(long long i,long long l,long long r){
    if (tr[i].l > r || tr[i].r < l) return 0;
    if (tr[i].r <= r && tr[i].l >= l) return tr[i].sum;
    long long mid = (tr[i].l + tr[i].r) >> 1;
    long long ans = 0;
    if (l <= mid) ans += query(i * 2,l,r);
    if (r > mid) ans += query(i * 2 + 1,l,r);
    return ans;
}

这样的话,最开始引入的例子就可以解决了

四、区间修改

如果将引入的例子改成将 [ l , r ] [l,r] [l,r]范围内所用的数加 1 1 1,那么采用原来的方法,将 [ l , r ] [l,r] [l,r]内所有的数挨个进行操作,时间复杂度就会退化成 O ( m n l o g 2 n ) O(mnlog_2n) O(mnlog2n),还不如用暴力算法和前缀和算法,这个时候我们就要采用 l a z y t a g lazytag lazytag,即懒标记。懒标记是指暂时不更新所有的区间值,只是留需要更新的值,在之后询问和修改时再更新。
在更新后需要将标记下传

pushdown函数:
void pushdown(long long i){
    if (tr[i].lazy != 0){
        tr[i * 2].lazy += tr[i].lazy;
        tr[i * 2 + 1].lazy += tr[i].lazy;
        tr[i * 2].sum += tr[i].lazy * (tr[i * 2].r - tr[i * 2].l + 1);
        tr[i * 2 + 1].sum += tr[i].lazy * (tr[i * 2 + 1].r - tr[i * 2 + 1].l + 1);
        tr[i].lazy = 0;
    }
    return ;
}
新的区间修改和区间查询
void update(long long i,long long l,long long r,long long k){
    if (tr[i].l > r || tr[i].r < l) return ;
    if (tr[i].r <= r && tr[i].l >= l){
        tr[i].sum += k * (tr[i].r - tr[i].l + 1);
        tr[i].lazy += k;
        return ;
    }
    pushdown(i);
    long long mid = (tr[i].l + tr[i].r) >> 1;
    if (l <= mid) update(i * 2,l,r,k);
    if (r > mid) update(i * 2 + 1,l,r,k);
    tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum;
}
long long query(long long i,long long l,long long r){
    if (tr[i].l > r || tr[i].r < l) return 0;
    if (tr[i].r <= r && tr[i].l >= l) return tr[i].sum;
    pushdown(i);
    long long mid = (tr[i].l + tr[i].r) >> 1;
    long long ans = 0;
    if (l <= mid) ans += query(i * 2,l,r);
    if (r > mid) ans += query(i * 2 + 1,l,r);
    return ans;
}

总代码(洛谷P3372 【模板】线段树 1 ):

#include <bits/stdc++.h>
using namespace std;
struct Tree {
    long long l,r;
    long long sum,lazy;
}tr[400050];
long long a[100050],n;
void build(long long i,long long l,long long r){
    tr[i].l = l;
    tr[i].r = r;
    if (l == r){
        tr[i].sum = a[l];
        return ;
    }
    long long mid = (l + r) >> 1;
    build(i * 2,l,mid);
    build(i * 2 + 1,mid + 1,r);
    tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum;
}
void pushdown(long long i){
    if (tr[i].lazy != 0){
        tr[i * 2].lazy += tr[i].lazy;
        tr[i * 2 + 1].lazy += tr[i].lazy;
        tr[i * 2].sum += tr[i].lazy * (tr[i * 2].r - tr[i * 2].l + 1);
        tr[i * 2 + 1].sum += tr[i].lazy * (tr[i * 2 + 1].r - tr[i * 2 + 1].l + 1);
        tr[i].lazy = 0;
    }
    return ;
}
void update(long long i,long long l,long long r,long long k){
    if (tr[i].l > r || tr[i].r < l) return ;
    if (tr[i].r <= r && tr[i].l >= l){
        tr[i].sum += k * (tr[i].r - tr[i].l + 1);
        tr[i].lazy += k;
        return ;
    }
    pushdown(i);
    long long mid = (tr[i].l + tr[i].r) >> 1;
    if (l <= mid) update(i * 2,l,r,k);
    if (r > mid) update(i * 2 + 1,l,r,k);
    tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum;
}
long long query(long long i,long long l,long long r){
    if (tr[i].l > r || tr[i].r < l) return 0;
    if (tr[i].r <= r && tr[i].l >= l) return tr[i].sum;
    pushdown(i);
    long long mid = (tr[i].l + tr[i].r) >> 1;
    long long ans = 0;
    if (l <= mid) ans += query(i * 2,l,r);
    if (r > mid) ans += query(i * 2 + 1,l,r);
    return ans;
}
int main(){
	ios :: sync_with_stdio(false);
	int m;
	cin >> n >> m;
	for (int i = 1;i <= n;i++) cin >> a[i];
	build(1,1,n);
	for (int i = 1;i <= m;i++){
		int op,l,r;
		cin >> op >> l >> r;
		if (op == 1){
			int k;
			cin >> k;
			update(1,l,r,k);
		}
		else cout << query(1,l,r) << endl;
	}
    return 0;
}

五、细节

在使用线段树时,必须将数组开到数据范围的 4 n 4n 4n,因为在访问过程中,除了会访问有意义的 2 n 2n 2n个节点,还会再检查是否是叶子节点时再次向下访问,导致可能会访问的节点个数的大致是题目给出的数据范围的 4 4 4
线段树还有一个问题,它的常数比较大,所以一般在 4 ∗ 1 0 5 4*10^5 4105的范围下能够1秒运行完

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值