Alex-zhai专栏

用键盘记录生活的每一瞬间

Leetcode之unique-binary-search-trees

题目描述:
Given n, how many structurally unique BST’s (binary search trees) that store values 1…n?

For example,
Given n = 3, there are a total of 5 unique BST’s.
这里写图片描述

动态规划来解决这道题:
我设bsTreeNum[i]表示共有i个节点时,能产生的BST树的个数
n == 0 时,空树的个数必然为1,因此bsTreeNum[0] = 1
n == 1 时,只有1这个根节点,数量也为1,因此bsTreeNum[1] = 1
n == 2时,
bsTreeNum[2] = bsTreeNum[0] * bsTreeNum[1] +bsTreeNum[1] * bsTreeNum[0]
n == 3时,
bsTreeNum[3] = bsTreeNum[0] * bsTreeNum[2] + bsTreeNum[1] * bsTreeNum[1] +bsTreeNum[2] * bsTreeNum[0]
同时,当根节点元素为 1, 2, 3, 4, 5, …, i, …, n时,基于以下原则的BST树具有唯一性:
以i为根节点时,其左子树构成为[0,…,i-1],其右子树构成为[i+1,…,n]构成
因此,dp[i] = sigma(dp[0…k] * dp[k+1…i]) 0 <= k < i - 1

我们得到了递推关系式,这是解决DP问题的关键!!!!

package suda.alex.leetcode;

import java.util.Scanner;

public class UniqueBSTree {

    /**
     * @param args
     */
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner scanner = new Scanner(System.in);
        System.out.println("input n:");
        int n = scanner.nextInt();
        System.out.println("the number of BST is:" + numTrees(n));
    }
    public static int numTrees(int n) {
        if(n == 0){
            return 1;
        }
        int[] bsTreeNum = new int[n+1];
        bsTreeNum[0] = 1;
        bsTreeNum[1] = 1;
        for(int i=2;i<=n;i++){
            for(int j=0;j<i;j++){
                bsTreeNum[i] += bsTreeNum[j]*bsTreeNum[i-j-1];
            }
        }
        return bsTreeNum[n];

    }

}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zjwcdd/article/details/51541617
文章标签: leetcode 动态规划
个人分类: leetcode
想对作者说点什么? 我来说一句

leetcode试题的答案

2018年01月14日 101KB 下载

没有更多推荐了,返回首页

不良信息举报

Leetcode之unique-binary-search-trees

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭