【网络表示学习】GraphSAGE

GraphSAGE是一种归纳式图嵌入模型,适用于大规模网络,能够在不需额外训练的情况下为新节点生成embedding。它通过采样邻居节点并使用aggregator函数聚合特征信息。模型包括Mean aggregator、LSTM aggregator和Pooling aggregator等结构。实验表明,GraphSAGE在无监督学习任务中表现出色,且易于扩展到新的节点。
摘要由CSDN通过智能技术生成

题目:Inductive Representation Learning on Large Graphs

作者:Hamilton, William L. and Ying, Rex and Leskovec, Jure

来源:NIPS 2017

源码:https://github.com/williamleif/GraphSAGE

目前大多数图嵌入方法在训练过程中需要图中所有节点参与,属于直推学习(transductive),无法直接泛化到之前未见的节点。本文提出一种适用于大规模网络的归纳式(inductive)模型-GraphSAGE,能够为新增节点快速生成embedding,而无需额外训练过程。

GraphSage训练所有节点的每个embedding,还训练一个聚合函数,通过从节点的相邻节点采样和收集特征来产生embedding。本文训练一组aggregator函数来从一个节点的邻节点aggregate特征信息,每个aggregator函数从不同的hops或搜索深度aggregate信息。

模型

不同于为每个节点训练独立的embedding,本文训练的是一系列不同深度的聚合函数,学习节点邻居的聚合特征。

Embedding生成

算法直观上是在每次迭代中,节点聚合邻居信息。随着不断迭代,节点得到图中来自越来越远的邻居信息。

邻居采样:在每个epoch中,均匀地选取固定大小的邻居数目,每次迭代选取不同的均匀样本。

损失函数

两两节点u和v的embedding向量表示z的无监督的损失函数:
J G ( z u ) = − l o g ( σ ( z u T z v ) ) − Q ⋅ E v n ∼ P n ( v ) l o g ( σ ( − z u T z v n ) ) J_{\mathcal{G}}(\mathbf{z}_u) = - {\rm log}(\sigma(\mathbf{z}_u^ \mathrm{ T } \mathbf{z}_v)) - Q \cdot \mathbb E_{v_n \sim P_n(v)} {\rm log} (\sigma(-\mathbf{z}_u^\mathrm{ T }\mathbf{z}_{v_n})) JG(zu)=log(σ(zu

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值