题目链接:https://leetcode-cn.com/problems/rotate-image/
题目描述
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
思路
1 转置+镜像对称
复杂度分析
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
/*
* 转置+镜像对称
* 时间复杂度O(N^2)
*/
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
if(matrix.empty() || matrix[0].empty() || matrix.size() == 1) return;
int n = matrix.size();
// 转置
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
swap(matrix[i][j], matrix[j][i]);
}
}
// 镜像对称
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n/2; ++j) {
swap(matrix[i][j], matrix[i][n-1-j]);
}
}
}
};
2 旋转矩形
/*
* 遍历每一圈
* 四个边的元素顺时针转
* 每个元素访问一遍,时间复杂度O(N^2)
*/
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
if(matrix.empty() || matrix[0].empty() || matrix.size() == 1) return;
int n = matrix.size();
for (int i = 0; i < n/2; ++i) {
int begin = i;
int end = n - i -1;
for (int j = 0; j < end - begin; ++j) {
int tmp = matrix[begin][begin+j]; // 左上
matrix[begin][begin+j] = matrix[end -j][begin]; // 左上=左下,上=左
matrix[end-j][begin] = matrix[end][end-j]; // 左下=右下,左=下
matrix[end][end-j] = matrix[begin+j][end]; // 右下=右上,下=右
matrix[begin+j][end] = tmp; // 右上=左上,右=上
}
}
}
};
复杂度分析
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)