最长公共字串与公共子序列

这两个问题都可以用动态规划做,由于比较相似,所以经常混淆。在这里把思路写一写,防止以后出错。

定义上的区别

最长公共字串,字串是指连续的序列,也就是中间不能有隔开。而子序列则可以不是连续的,只要保持相对位置的正确即可。例如给两个字符串:abcdeacde ,两个字符串的最长公共字串是cde , 而最长公共子序列是acde

动态规划方法的区别

仍然以两个字符串s1 = abcdes2 = acde 为例。

最长公共子串

最简单的方法就是依次比较,以某个串为母串,然后生成另一个串的所有长度的子串,依次去母串中比较查找,这里可以采用先从最长的子串开始,减少比较次数,但是复杂度依然很高。

上面的方法做了很多的重复计算。例如s1为母串,生成s2的字串去匹配s1.
那么字串有

a    c    d    e
ac   cd    de
acd   cde
acde
当我们匹配ac时,我们已经知道前缀为a时,有一个匹配。这时只需要找到匹配的位置,看s1中为a的位置的下一个字符是不是c。
当匹配cde时,我们知道cd有两个匹配。这时只需要看cd匹配的位置的下一个字符是不是e。如果是e,那么字串长度加1,否则为2

连续i子串的特点就是如果str1[i]和str2[j]是属于某公共子串的最后一个字符,那么一定有str1[i]=str2[j] && str1[i-1] = str2[j-1],从矩阵中直观的看,就是由“1”构成的“斜线”代表的序列都是公共子串,那么最长公共子串肯定就是斜线“1”最长的那个串。

最长公共子序列

事实上,最长公共子序列问题也有最优子结构性质。

记:

Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀)

Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀)

假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y)。

若xm=yn(最后一个字符相同),则不难用反证法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn 且显然有Zk-1∈LCS(Xm-1 , Yn-1)即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X , Y)的长度等于LCS(Xm-1 , Yn-1)的长度加1)。

若xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y),类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。

由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。

也就是说,解决这个LCS问题,你要求三个方面的东西:1、LCS(Xm-1,Yn-1)+1;2、LCS(Xm-1,Y),LCS(X,Yn-1);3、max{LCS(Xm-1,Y),LCS(X,Yn-1)}。

引用自http://blog.csdn.net/v_july_v/article/details/6695482

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值