《经典算法大全》河内之塔

. 1. 1. 河内之塔 河内之塔 河内之塔
说明
河内之塔 (Towers of Hanoi) 是法国人 M.Claus(Lucas) 于 1883 年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市; 1883 年法国数学家 Edouard Lucas 曾提及这个故事,据说创 世纪时 Benares 有一座波罗教塔,是由三支钻石棒( Pag )所支撑,开始时神在第一根棒上放置 64个由上至下依由小至大排列的金盘( Disc ),并命令僧侣将所有的金盘从第一根石棒移至第三 根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损, 而也就是世界末日来临之时。
解法
如果柱子标为 ABC ,要由 A 搬至 C ,在只有一个盘子时,就将它直接搬至 C ,当有两个盘子,就将 B 当作辅助柱。如果盘数超过 2 个,将第三个以下的盘子遮起来,就很简单了,每次 处理两个盘子,也就是: A->B 、 A ->C 、 B->C 这三个步骤,而被遮住的部份,其实就是进入程式的递回处理。事实上,若有 n 个盘子,则移动完毕所需之次数为 2^n - 1 ,所以当盘数为 64 时, 则所需次数为: 264- 1 = 18446744073709551615 为 5.05390248594782e+16 年,也就是约 5000 世纪,如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约 5850 亿年左右。
--------------------

  1. #include <stdio.h>
  2. void hanoi(int n, char A, char B, char C) {
  3. if(n == 1) {
  4. printf("Move sheet %d from %c to %c/n", n, A, C);
  5. }
  6. else {
  7. hanoi(n-1, A, C, B);
  8. printf("Move sheet %d from %c to %c/n", n, A, C);
  9. hanoi(n-1, B, A, C);
  10. }
  11. }
  12. int main() {
  13. int n;
  14. printf(" 请输入盘数 : ");
  15. scanf("%d", &n);
  16. hanoi(n, 'A', 'B', 'C');
  17. return 0;
  18. }
复制代码

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值