. 1. 1. 河内之塔 河内之塔 河内之塔
说明
河内之塔 (Towers of Hanoi) 是法国人 M.Claus(Lucas) 于 1883 年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市; 1883 年法国数学家 Edouard Lucas 曾提及这个故事,据说创 世纪时 Benares 有一座波罗教塔,是由三支钻石棒( Pag )所支撑,开始时神在第一根棒上放置 64个由上至下依由小至大排列的金盘( Disc ),并命令僧侣将所有的金盘从第一根石棒移至第三 根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损, 而也就是世界末日来临之时。
解法
如果柱子标为 ABC ,要由 A 搬至 C ,在只有一个盘子时,就将它直接搬至 C ,当有两个盘子,就将 B 当作辅助柱。如果盘数超过 2 个,将第三个以下的盘子遮起来,就很简单了,每次 处理两个盘子,也就是: A->B 、 A ->C 、 B->C 这三个步骤,而被遮住的部份,其实就是进入程式的递回处理。事实上,若有 n 个盘子,则移动完毕所需之次数为 2^n - 1 ,所以当盘数为 64 时, 则所需次数为: 264- 1 = 18446744073709551615 为 5.05390248594782e+16 年,也就是约 5000 世纪,如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约 5850 亿年左右。
--------------------
- #include <stdio.h>
- void hanoi(int n, char A, char B, char C) {
- if(n == 1) {
- printf("Move sheet %d from %c to %c/n", n, A, C);
- }
- else {
- hanoi(n-1, A, C, B);
- printf("Move sheet %d from %c to %c/n", n, A, C);
- hanoi(n-1, B, A, C);
- }
- }
- int main() {
- int n;
- printf(" 请输入盘数 : ");
- scanf("%d", &n);
- hanoi(n, 'A', 'B', 'C');
- return 0;
- }