1.PSNR(Peak Signal to Noise Ratio)峰值信噪比:
MSE表示当前图像X和参考图像Y的均方误差(Mean Square Error),H、W分别为图像的高度和宽度;
MSE=1H×W∑i=1H∑j=1W(X(i,j)−Y(i,j))2
PSNR的单位是dB,数值越大表示失真越小。n为每像素的比特数,一般的灰度图像取8,即像素灰阶数为256.
PSNR=10log10((2n−1)2MSE)
PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。
Matlab的函数代码实现如下:
function [ out ] = psnr( X,Y )
[ m,n ] = size( X );
mse = sum(( double(X(:)) - double(Y(:)) ).^2);
mse = mse/(m*n);
out = 10*log10((255*255)/mse);
end
2.SSIM(Structural Similarity)结构相似性:
SSIM(Structural Similarity)结构相似性
μX 、 μY 分别表示图像X和Y的均值, σX 、 σY 分别表示图像X和Y的方差, σXY 表示图像X和Y的协方差,即
μX=1H×W∑i=1H∑j=1