pandas.DataFrame.T 的作用

可以使用Cython或Numba将Python代码编译成C或JIT编译的机器码来加速Pandas.DataFrame函数。以下是使用Cython加速Pandas.DataFrame函数的一些步骤: 1. 安装Cython:使用pip install cython安装Cython。 2. 编写Cython代码:将Pandas.DataFrame函数转化为Cython代码,添加类型定义和C语言语法。 3. 编译Cython代码:使用cythonize命令将Cython代码编译成C代码。 4. 构建Python扩展:使用setup.py文件构建Python扩展,将C代码编译成共享库。 5. 使用Python扩展:在Python代码中导入编译好的Python扩展,并使用加速的Pandas.DataFrame函数。 以下是一个使用Cython加速Pandas.DataFrame的示例代码: ``` import pandas as pd import numpy as np import cython # 定义Cython函数 @cython.boundscheck(False) @cython.wraparound(False) @cython.cdivision(True) cpdef pd.DataFrame my_func(pd.DataFrame df): cdef int n_rows = df.shape[0] cdef int n_cols = df.shape[1] cdef np.ndarray[np.float64_t, ndim=2] arr = df.values cdef np.ndarray[np.float64_t, ndim=1] col_sums = np.zeros(n_cols, dtype=np.float64) cdef int i, j # 计算列总和 for i in range(n_rows): for j in range(n_cols): col_sums[j] += arr[i,j] # 创建新的DataFrame new_df = pd.DataFrame(columns=df.columns) new_df.loc[0] = col_sums return new_df # 编译Cython代码 from Cython.Build import cythonize cythonize("my_func.pyx") # 构建Python扩展 from distutils.core import setup from Cython.Build import cythonize setup(ext_modules=cythonize("my_func.pyx")) # 使用Python扩展 import my_func df = pd.DataFrame(np.random.rand(100, 100)) new_df = my_func.my_func(df) ``` 使用Numba加速Pandas.DataFrame函数的步骤与上面类似,只需要将Cython替换为Numba即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值