某品牌电商促销活动运营分析

该博客通过对电商促销活动的数据分析,评估了总体运营情况,重点关注价格和折扣区间对商品结构的影响。通过计算各项指标如销售额、转化率、售卖比等,提出针对不同价格和折扣区间的商品优化方案,旨在提升销售效果和商品流转效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加粗样式### 分析流程:

  • 1、总体运营指标
    总体运营部分,主要关注销售额、售卖比、UV、转化率等指标,其他指标作为辅助指标。销售额用来和预期目标做对比,售卖比用来看商品流转情况。
  • 2、从价格区间找出表现不好的产品,进行保留或清仓处理,优化商品结构
  • 3、从折扣区间来找出表现不好的产品,进行保留或清仓处理,优化商品结构
  • 4、流量布局

分析目的:

    评估促销活动的结果,并根据情况优化商品结构,

数据集:

该数据集文件包含三张字表,分别是商品明细表、商品热度情况、用户销售明细表。

import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings('ignore') 
1、读取数据
# 读取数据
# 商品明细表
dt1 = pd.read_excel(r'H:\dataset\sales_info.xlsx',sheetname=0)
dt1.rename(columns={
   "sale_name":"商品名",
                    "sale_price":"售卖价",
                    "tag_price":"吊牌价",
                    "discout":"折扣率",
                    "stocks":"库存量",
                    "stocks_value":"货值",
                    "cost_price":"成本价",
                    "profit_rate":"利润率",
                    "skus":"SKU"},
          inplace=True)
dt1.head()  
# 读取数据
# 商品热度情况
dt2 = pd.read_excel(r'H:\dataset\sales_info.xlsx',sheetname=1)
dt2.rename(columns={
   "sale_name":"商品名",
                    "uvs":"UV数",
                    "collections":"收藏数",
                    "carts":"加购物车数"},
          inplace=True)

dt2.head()
商品名 UV数 收藏数 加购物车数
0 A001 10926 48 372
1 A002 13124 84 193
2 A003 25657 45 173
3 A004 20833 5 273
4 A005 19371 71 356
# 读取数据
# 用户销售明细表
dt3 = pd.read_excel(r'H:\dataset\sales_info.xlsx',sheetname=2)
dt3.rename(columns={
   "user_id":"用户id",
                    "buy_date":"购买日期",
                    "sale_name":"商品名",
                    "buy_cons":"购买数量",
                    "buy_price":"购买单价",
                    "cost_price":"购买金额",
                    "is_tui":"是否退货",
                    "tui_cons":"退货件数",
                    "tui_price":"退货金额"},
          inplace=True)

dt3['是否退货']=dt3["是否退货"].map({
   "是":1,"否":0})
dt3.head()
用户id 购买日期 商品名 购买数量 购买单价 购买金额 是否退货 退货件数 退货金额
0 1 20191111 F001 1 920.0 920.0 1 1 920.0
1 2 20191111 B007 2 548.0 1096.0 0 0 0.0
2 2 20191111 E007 1 930.0 930.0 1 1 930.0
3 3 20191111 A004 2 320.0 640.0 1 2 640.0
4 3 20191111 H007 2 750.0 1500.0 0 0 0.0
2、合并商品信息表和商品热度表数据
# 把商品信息加上该商品的热度信息
# 得到基础的商品信息,以及商品的一些热度信息:加购物车数量,收藏数量、uv数
dt_product = dt1.merge(dt2,how="left",on="商品名")
dt_product.head()
商品名 售卖价 吊牌价 折扣率 库存量 货值 成本价 利润率 SKU UV数 收藏数 加购物车数
0 A001 15 70 0.214286 501 35070 14 0.066667 2 10926 48 372
1 A002 236 610 0.386885 423 258030 75 0.682203 1 13124 84 193
2 A003 473 1253 0.377494 415 519995 394 0.167019 1 25657 45 173
3 A004 320 835 0.383234 624 521040 279 0.128125 2 20833 5 273
4 A005 15 82 0.182927 179 14678 27 -0.800000 1 19371 71 356
3、合并商品信息表和商品热度表数据和用户销售明细表
# 统计每个商品的一个销售情况

product_sales = dt3.groupby("商品名").agg({
   "购买数量":"sum",
                                                 "购买金额":"sum",
                                                 "退货件数":"sum",
                                                 "退货金额":"sum",
                                                 "购买单价":"mean",
                                                 "用户id":pd.Series.nunique}).reset_index()
product_sales.rename(columns={
   "购买数量":"商品销售数量",
                              "购买金额":"商品销售金额",
                              "是否退货":"商品退货数量",
                              "退货金额":"商品退货金额",
                              "购买单价":"商品销售单价",
                              "用户id":"购买用户数量"},inplace=True)
product_sales.head()
商品名 商品销售数量 商品销售金额 退货件数 商品退货金额 商品销售单价 购买用户数量
0 A001 185 2775.0 59 885.0 15.0 116
1 A002 146 34456.0 31 7316.0 236.0 87
2 A003 144 68112.0 31 14663.0 473.0 94
3 A004 172 55040.0 56 17920.0 320.0 111
4 A005 122 1830.0 32 480.0 15.0 81
# 合并商品信息
dt_product_sales = dt_product.merge(product_sales,how="left",on="商品名")
dt_product_sales.head()
商品名 售卖价 吊牌价 折扣率 库存量 货值 成本价 利润率 SKU UV数 收藏数 加购物车数 商品销售数量 商品销售金额 退货件数 商品退货金额 商品销售单价 购买用户数量
0 A001 15 70 0.214286 501 35070 14 0.066667 2 10926 48 372 185 2775.0 59 885.0 15.0 116
1 A002 236 610 0.386885 423 258030 75 0.682203 1 13124 84 193 146 34456.0 31 7316.0 236.0 87
2 A003 473 1253 0.377494 415 519995 394 0.167019 1 25657 45 173 144 68112.0 31 14663.0 473.0 94
3 A004 320 835 0.383234 624 521040 279 0.128125 2 20833 5 273 172 55040.0 56 17920.0 320.0 111
4 A005 15 82 0.182927 179 14678 27 -0.800000 1 19371 71 356 122 1830.0 32 480.0 15.0 81
一、总体运营情况评价

总体运营部分,主要关注销售额、售卖比、UV、转化率等指标,其他指标作为辅助指标。销售额用来和预期目标做对比,售卖比用来看商品流转情况。

  • GMV:销售额,在唯品会里称为到手价。
  • 实销:GMV – 拒退金额。
  • 销量:累计销售量(含拒退)。
  • 客单价:GMV / 客户数,客单价与毛利率息息相关,一般客单价越高,毛利率越高。
  • UV:商品所在页面的独立访问数。
  • 转化率:客户数 / UV。
  • 折扣率:GMV / 吊牌总额(吊牌总额 = 吊牌价 * 销量),在日常工作中,吊牌额是必不可少的。
  • 备货值:吊牌价 * 库存数。
  • 售卖比:又称售罄率,GMV / 备货值。
  • 收藏数:收藏某款商品的用户数量。
  • 加购数:加购物车人数。
  • SKU数:促销活动中的SKU计数(一般指货号)。
  • SPU数:促销活动中的SPU计数(一般指款号)。
  • 拒退量:拒收和退货的总数量。
  • 拒退额:拒收和退货的总金额。
#1、GMV:销售额,包含退货的金额
gmv = dt_product_sales["商品销售金额"].sum()
gmv
3747167.0
#2、实际销售额=GMV - 退货金额
return_sales = dt_product_sales["商品退货金额"].sum()
return_money = gmv - return_sales
return_money
2607587.0
#3、销量:累计销售量(含拒退)
all_sales = dt_product_sales["商品销售数量"].sum()
all_sales
12017
#4、客单价:GMV / 客户数,客单价与毛利率息息相关,一般客单价越高,毛利率越高。
# dt3.user_id.unique().count()

custom_price = gmv / dt_product_sales["购买用户数量"].sum()
custom_price
493.56783456269756
# 5、UV:商品所在页面的独立访问数
uv_cons = dt_product_sales["UV数"].sum()
uv_cons
1176103
# 6、转化率:客户数 / UV。
uv_rate = dt_product_sales["购买用户数量"].sum() / dt_product_sales["UV数"].sum()
uv_rate
0.006455216932530569
# 7、折扣率:GMV / 吊牌总额(吊牌总额 = 吊牌价 * 销量),在日常工作中,吊牌额是必不可少的。
tags_sales = np.sum(dt_product_sales["吊牌价"] * dt_product_sales["商品销售数量"])
discount_rate= gmv / tags_sales 
discount_rate
0.4179229541452886
# 8、备货值:吊牌价 * 库存数。
goods_value = dt_product_sales["货值"].sum
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值