计算机视觉
KeeJee
机器学习,数据挖掘
展开
-
LBP人脸识别
LBP(local binary pattern)是一种用来描述图像局部纹理特征的算子。原始的LBP于1994年提出,它反映内容是每个像素与周围像素的关系。后被不断的改进和优化,分别提出了LBP旋转不变模式、LBP均匀模式等。一:原始的LBP 给出一个简单的案例计算LBP:如下图,周围8个像素点比中间点像素值大(或者相等)的记为1,小的记为0,这样就得到二值图,然后按顺时针方向得到二进转载 2017-04-01 14:28:43 · 2034 阅读 · 0 评论 -
LBP人脸识别
第三种算法称之为LBP算法,这个算法的思路与PCA和Fisher有很大不同,他是考虑局部特征算子,并不是全局考虑。这种算法定义了一种LBP特征,这种特征与我们经常见到的Haar特征、HoG特征没有啥太大不同,都是特征算子,只是算法不同。因此,我们按照理解特征算子一类的算法去理解LBP就可以了。注意,LBP对关照不敏感,为什么?因为LBP算子是一种相对性质的数量关系,相比于PCA或者转载 2017-04-01 14:32:11 · 2795 阅读 · 1 评论 -
VGG net
1. 简介VGGNet由牛津大学的视觉几何组(Visual Geometry Group)提出,是ILSVRC-2014中定位任务第一名和分类任务第二名。其突出贡献在于证明使用很小的卷积(3*3),增加网络深度可以有效提升模型的效果,而且VGGNet对其他数据集具有很好的泛化能力。如今,卷积神经网络已经成为计算机视觉领域的常用工具,所以有很多人尝试改善2012年提出的AlexNet转载 2017-07-07 09:41:00 · 5163 阅读 · 0 评论 -
深度学习 - 目标检测算法
1. 传统目标检测传统目标检测算法流程为:多尺度滑动窗口,对每个窗口进行特征提取,分类器分类。以adaboost人脸检测算法为例:1)多尺度滑动窗口提取很多不同尺度的窗口。2)对每个窗口进行特征提取,在人脸检测中常用的harr特征,如下图:分别对应的特征是:边缘特征,线性特征,方向特征。特征计算方式是白色区域像素之和 - 黑色区域像素之和。3)分类器分类,一般分为两类:原创 2017-07-10 13:53:48 · 6418 阅读 · 0 评论 -
ImageNet - 1000种物体对应编号
n01440764 鱼n01443537 鱼n01484850 鱼n01491361 鱼n01494475 鱼n01496331 鱼n01498041 鱼n01514668 鸡n01514859 鸡n01518878 鸵鸟n01530575 鸟n01531178 鸟n01532829 鸟n01534433 鸟n01537544 鸟n015原创 2017-09-21 09:36:47 · 3517 阅读 · 1 评论