Android中Anmation运动时的监听方法

本文介绍了一种在动画过程中实时监听并获取动画元素坐标的方法。通过创建独立的监听线程,不断获取动画中的Matrix来计算出实际的X,Y坐标,解决了单线程难以实现的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在开发过程需要对不规则的Animation运动进行坐标实时监听,但是基本上单线程很难实现,无论实在WindowsFocusChanged()里面依靠Timer调用坐标,还是利用其它监听器都不行,最后使用另一个线程监听的办法。


同时不断获得Animation运动中的Metrix,其中Metrix可以看做一个3X3的矩阵,Metrix[2]和Metrix[5]可以获得对应X和Y的偏移量,再加上原坐标就可以获得运动时的X,Y坐标。

下面贴代码:

private Thread getLocationThread = new Thread()//对应FlySwa1的监听线程
    {
    	
    	
    	@Override
    	public void run()
    	{
    		while(ThreadFlag)
    		{
    			try{
    				Transformation transformation = new Transformation();
        			anim3.getTransformation(AnimationUtils.currentAnimationTimeMillis(), transformation);
        			Matrix matrix = transformation.getMatrix();
        			float []matrixValus = new float[9];
        			matrix.getValues(matrixValus);
        			location[0]=(int)matrixValus[2]+FlySwa1.GettempX();
        			location[1]=(int)matrixValus[5]+FlySwa1.GettempY(); 
        			try{
        				Thread.sleep(50l);
        			} catch (InterruptedException e){
        				e.printStackTrace();
        			}
    			}catch(Exception e)
    			{
    				
    			}	
    		}
    		//if(!ThreadFlag)
    		//{
    		//	return;
    		//}
    	}
    };

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值