AI Conference Beijing 2018(人工智能北京大会)亮点系列之一

编者注:人工智能北京大会2018刚刚结束,可以访问Safari观看本次会议主题演讲完整视频。

刚刚结束的人工智能北京大会独特之处在于将重点放在应用人工智能——弥合人工智能研究领域与产业商业应用之间的差距。只有本次北京人工智能大会将硅谷和中国融合在一起,创造一次全球人工智能专家难得的相聚,为日程安排带来了非同寻常的技术深度及实用的业务内容。讲师来自各公司人工智能专家,包括百度、谷歌、eBay、Bonsai、Uber、微软、阿里巴巴、SAS、Unity、SalesForce、IBM、伯克利、斯坦福及牛津大学等等。

这里计划分几次介绍会议上的部分亮点。

人工智能助推医疗行业现代化

人工智能正在革新各行各业,并将给医疗行业带来深远影响。人工智能可为医生提供全新洞察,利用海量医疗数据加快诊断速度。人工智能还可减少新药物的开发时间和成本。Arjun Bansal通过本讲话介绍Intel和其他行业领导者如何利用人工智能技术携手解决医疗行业的一些重大挑战。

同时可以参考讲师为本次讲话准备的幻灯片。

用于自动驾驶的机器学习:最近进展及未来挑战

我们在应用机器学习方面取得了快速进展,解决感知、预测和规划问题。 但仍旧面临着一些基础性的挑战,需要学习更强大和抽象的表示,理解驾驶场景,并在多代理设置中做出正确决定。

将机器学习科研成果转化为现实产品

将最前沿的研究成果转化成现实的产品是一个巨大的挑战,特别是对于机器学习而言。Reza Zadeh讨论了三个构建最前沿机器学习产品正面临的挑战。首先,因为机器学习都是关于近似的,所以很难评估一个研究结果对于商业目标是否足够好。第二,构建一个能把机器学习模型扩展到生产环境的系统本身就是一个挑战。一个模型可能在实验环境里工作得很好,但是没有进一步的研究就想把它扩展到上百万用户的系统里是不可能的。第三,为机器学习系统构建好的用户界面也非常重要。因为机器学习研究人员通常没有以用户为中心进行设计的背景知识,他们会倾向于低估好的UX设计的重要性。这里将是以计算机视觉产品为例,使用案例、建议和经验教训来探讨这些挑战。

同时可以参考讲话幻灯片。

注:文中超链接如果不能访问可以点击“阅读原文”访问原文页面。

640?wx_fmt=png


阅读更多

没有更多推荐了,返回首页