威胁模型分析

序言

接近一个月没有更新学习心得了,最近一直忙于业务开发。在做项目时会涉及到维护整体架构的威胁建模,简单记录一下。

常见的网络威胁见链接:常见的网络威胁

威胁模型分析(Threat Modeling)

威胁模型分析是寻找系统潜在威胁以建立对抗的策略,以建立安全的系统。它属于资讯安全的议题,并将问题划分成“寻找针对特定技术的威胁模型”与“基于威胁模型建置更安全的系统”。

常见的威胁建模模型

  • STRIDE
  • PASTA
  • LINDDUN
  • CVSS
  • Attack Trees
  • Persona non Grata
  • Security Cards
  • hTMM
  • 威胁建模方法
  • Trike
  • VAST建模
  • OCTAVE

微软STRIDE模型

STRIDE即Spoofing Identify、Tampering With Data、 Repudiation、Information Disclosure、Denial Of Service、Elevation Of Privilege的缩写。STRIDE于1999年发明,并于2002年被Microsoft采纳,是目前最成熟的威胁建模方法。STRIDE随着时间的推移不断发展包括新的特定于威胁的表以及STRIDE-per-Element和STRIDE-per-interaction的变体。

威胁安全性属性
假冒(Spoof)认证(Authentication)
篡改(Tamper)完整性
否认(Repudiation)不可抵赖性
信息泄漏(Information Disclosure)机密性
拒绝服务(Denial Of Service)可用性
提升权限(Elevation Of Privilege)授权(Authorization)

在安全架构图中常见的一个词是信任边界(Trust Boundary),即数据流从一个区域流向另一个区域时是否存在安全风险。

STRIDE四元素

  • 外部实体:系统控制范围之外的用户、软件系统或设备
  • 处理过程:表示一个任务,一个执行过程,一定有数据流入和流出
  • 数据存储:数据库,文件,队列
  • 数据流:数据传输和转换

分析方式

  • 绘制流程图
  • 分析威胁
  • 评估风险
  • 指定消减措施
  • 落实消减措施

微软的Threat Modeling Tool

microsoft_threat-modeling-tool

威胁模型部分
在这里插入图片描述
模版部分
在这里插入图片描述
工具示例,
在这里插入图片描述
分析威胁
在这里插入图片描述

威胁建模的主要步骤

  • 确定系统边界:确定系统或应用程序的范围和边界。

  • 收集信息:收集有关系统和应用程序的信息,包括设计文档、代码、配置文件、数据流图等。

  • 识别威胁:通过威胁建模工具和方法来识别威胁,例如数据泄露、身份验证漏洞、拒绝服务攻击等。

  • 评估威胁:对识别的威胁进行评估,包括威胁的可能性和影响程度。

  • 制定安全措施:制定相应的安全措施来降低系统或应用程序的威胁风险,例如加强身份验证、实施访问控制、加密数据等。

参考链接

1、知乎——关于网络安全威胁建模的12种方法介绍
2、Software Security | Trust Boundary Violation
3、microsoft_threat-modeling-tool

### 威胁模型的概念及其在IT安全中的应用场景 威胁模型是一种结构化的分析方法,用于识别、量化和缓解潜在的安全风险。这种方法可以帮助企业和组织更好地理解其资产面临的威胁,并制定相应的防御策略。威胁模型的核心在于描述系统的脆弱性以及这些脆弱性如何被利用。 #### 威胁模型的基础概念 威胁模型主要关注的是“是什么”,即哪些因素可能导致系统受到攻击或损害。这种定义方式使得威胁模型成为一种高层次的抽象框架,帮助团队聚焦于关键的风险区域[^2]。例如,在构建一个新应用程序时,可以通过威胁建模过程发现输入验证不足的问题,从而提前采取措施防止SQL注入或其他类型的攻击。 #### 威胁模型与攻击树的关系 虽然威胁模型侧重于描述问题的本质,但具体实施路径往往依赖于更详细的工具和技术支持。其中,攻击树作为一种补充手段提供了操作层面的信息——也就是“怎么做”。通过将两者结合起来,可以全面覆盖从理论假设到实际执行的所有环节。这意味着在一个完整的安全性评估流程里,先由威胁模型划定范围并设定优先级;再借助攻击树细化每种可能性的具体表现形式。 #### IT安全中的典型应用场景 1. **软件开发生命周期(SDLC)** 在SDLC早期阶段引入威胁建模活动有助于减少后期修复漏洞的成本。开发人员可以在设计初期就考虑各种可能发生的恶意行为模式,并据此调整架构决策。 2. **云计算环境下的风险管理** 对于那些计划采用通用大模型并通过私有化部署加强控制的企业来说,建立完善的威胁模型尤为重要。这不仅涉及传统意义上的防火墙配置或者加密算法选择,还包括针对人工智能特性的特殊考量,如对抗样本生成能力等特性带来的新型挑战[^1]。 3. **红蓝对抗演练** 攻击性安全实践已经成为现代网络安全战略不可或缺的一部分。在这种背景下,“主动出击”的理念促使许多机构组建专门队伍模拟真实世界里的黑客行动(即所谓的‘红队’) 。与此同时,为了提高训练效率及效果评价准确性,则需要依据科学合理的标准体系来进行规划布置—而这正是基于良好定义过的威胁模型之上展开的工作内容之一[^3]. 4. **机器学习系统的防护机制建设** 当前越来越多的关键业务功能正逐步迁移至智能化平台运行,因此关于此类新兴技术载体内部运作原理的理解变得尤为迫切。鉴于此情况之下,运用诸如LIME (Local Interpretable Model-Agnostic Explanations), SHAP (SHapley Additive exPlanations)之类的可解释性技术去剖析复杂黑箱预测逻辑便显得格外重要;同时也可以尝试把较为直观易懂的学生模型当作代理角色来逼近原始复杂的老师版本,进而达到简化整体认知难度的目的[^4]. ```python import lime from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier # 加载数据集 data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target) # 训练随机森林分类器作为教师模型 rfc = RandomForestClassifier(n_estimators=100).fit(X_train, y_train) # 使用 LIME 解释单个实例 explainer = lime.lime_tabular.LimeTabularExplainer( training_data=X_train, feature_names=data.feature_names, class_names=data.target_names, mode='classification' ) exp = explainer.explain_instance(X_test[0], rfc.predict_proba) print(exp.as_list()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值