统计量-均值、众数、中位数、方差等

本文介绍了众数、中位数和均值的概念及特点,并探讨了它们的应用场景。在数据呈对称分布时,均值是最合适的集中趋势代表值;而在偏态分布时,则应选择众数或中位数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 众数、中位数和均值的特点和应用场合

1 .1 概念

均值(mean): 样本中所有数的平均值。
众数(mode): 样本中出现次数最多的数。
中位数(median): 样本排序后,处于中间位置的那个数。
极差或全距(range) : 数列X中最大值与最小值之间的差值,用于描述X的数字分散程度,越小则数字之间越紧密
中程数(midrange) : 数列X中(最大值 + 最小值)/2

1 .2 应用场景

  (1)当数据呈对称分布或接近对称分布时,三个代表值相等或接近相等,这时应选择均值作为集中趋势的代表值。
  (2)当数据为偏态分布,特别是当偏斜的程度较大时,我们应选择众数或中位数等位置代表值,这时它们的代表性要比均值好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值