【CCF】“中科院1区守门员“?Elsevier旗下Top刊,年发文量1500+,未来可期!

发表说

图片

图片

截图来源:LetPub

01 期刊概况

Engineering Applications of Artificial Intelligence

图片

【出版社】Elsevier

【ISSN】0952-1976

【检索情况】SCI&EI双检

【WOS收录年份】1992年

【出刊频率】月刊,最新一期Volume 128 ,February 2024

【期刊官网】

https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence

【投稿系统】

https://www2.cloud.editorialmanager.com/eaai/default2.aspx

02 接收领域

Engineering Applications of Artificial Intelligence为快速发表描述人工智能方法在所有工程分支中的实际应用的作品提供了一个国际论坛。

该期刊的重点包括但不限于以下方面的创新应用:

• 物联网和网络物理系统

• 智能交通系统和智能车辆

• 大数据分析,理解复杂网络

• 神经网络、模糊系统、神经模糊系统

• 深度学习和现实世界的应用

• 自组织、新兴或仿生系统

• 全局优化、元启发式及其应用

• 分布式人工智能系统的架构、算法和技术,包括基于多智能体的控制和全子控制

• 决策支持系统

• 推理方面:溯因推理、基于案例的推理、基于模型的推理、非单调推理、不完全推理、渐进推理和近似推理

• 混沌理论和分形的应用

• 实时智能自动化及其相关支持方法和技术

• 软件工程的各个方面

• 智能故障检测、故障分析、诊断和监控

• 机器人技术

03 影响因子

从历年影响因子变化趋势图上来看,该期刊影响因子逐年上升,2023年影响因子最高为8

图片

截图来源:LetPub

04 期刊分区

JCR分区:

自动化与控制系统1区;

计算机科学、人工智能1区;

工程、电气与电子1区;

工程,多学科1区;

图片

来源:WOS数据库

中科院分区:

在2023年12月最新升级版中,

大类学科:计算机科学2区;

小类学科:工程:综合1区;

                  自动化与控制系统2区;

                  计算机:人工智能2区;

                  工程:电子与电气2区;

图片

截图来源:LetPub

05 预警情况

中科院《国际期刊预警名单(试行)》名单:无预警记录

图片

截图来源:LetPub

06 自引率

该期刊自引率近年来呈现先降后升的趋势,最新自引率为10%(仍处于安全值20%以内)

图片

截图来源:LetPub

07 国人占比

排名前三的发文国家/地区分别为中国、美国和印度。国人占比排名第一,32.841%,可见期刊对国人非常友好。

图片

来源:WOS数据库

08 年发文量

小编为大家统计了期刊近十年的发文量,由以下数据来看,该期刊的发文量逐年上升,2023年发文量更是一路飙升至1500+,预计今年发文量也不会太低。

图片

来源:WOS数据库

09 是否OA

该期刊是一本混合获取期刊,可选择传统订阅模式(无需版面费),也可选择开放获取模式(版面费3270美元)。

图片

图片

截图来源:期刊官网

10 是否CCF

该期刊是中国计算机学会推荐期刊,属人工智能领域C类

图片

图片

11 审稿周期

从官网公布的数据来看,从作者投稿到录用的平均时间为148天。

图片

截图来源:期刊官网

📝以官网近期发表的几篇文章为例:

图片

案例一:仅2个月17天录用,10天上线见刊!

2023.10.22提交→2024.1.8录用→2024.1.18见刊

图片

案例二:共计5个月录用,17天上线见刊!

2023.7.31提交→2024.1.1录用→2024.1.18见刊

12 小结

这本期刊是Elsevier旗下计算机领域的优质Top刊。JCR1区,中科院2区。这本期刊影响因子不低,却常年屈居中科院2区Top之位,称得上是“1区守门员”了。期刊征稿范围广,对国人非常友好。期刊审稿周期相对较短,2-5个月即可录用。

若您领域符合,手中有高质量稿件的朋友可尝试投稿!也可将其推荐给朋友,荐稿费以及更多🆓礼品等你来拿~

更多期刊详情可关注GZ号“欧亚科睿学术”

### 回答1: 人工智能的工程应用包括但不限于以下几个方面: 1. 自动化生产:人工智能可以通过机器学习和深度学习等技术,实现对生产流程的自动化控制和优化,提高生产效率和质。 2. 智能交通:人工智能可以通过图像识别、语音识别等技术,实现对交通流的监控和管理,提高交通安全和效率。 3. 智能家居:人工智能可以通过语音识别、图像识别等技术,实现对家居设备的智能控制和管理,提高生活便利性和舒适度。 4. 机器人技术:人工智能可以通过机器学习和深度学习等技术,实现对机器人的智能控制和管理,提高机器人的自主性和灵活性。 5. 医疗健康:人工智能可以通过数据分析和机器学习等技术,实现对医疗数据的智能分析和管理,提高医疗服务的效率和质。 ### 回答2: 人工智能在工程应用中有着广泛的应用。首先,人工智能可以用于工程设计和优化。工程师可以利用人工智能算法来生成和改进设计方案,从而提高工程系统的效能和性能。例如,在航空工程领域,人工智能技术可以用来设计更高效的飞机翼形,减少飞机的气动阻力,提高燃油利用率。此外,人工智能还可以用于工程系统的优化和控制,帮助工程师实现更好的系统性能和效果。 其次,人工智能可以应用于工程领域的智能监测和诊断。通过利用传感器数据和机器学习算法,人工智能可以分析和预测工程系统的状态,及时发现异常情况,并提出相应的解决方案。比如,在大型工业设备的维护和管理中,人工智能可以通过监测和分析设备的运行数据,预测设备故障的发生概率,提前进行维护和修理,以避免生产线的中断和损失。 此外,人工智能还可以用于工程领域的图像识别和模式识别。通过训练深度学习模型,工程师可以将人工智能运用于自动化的图像识别任务,例如识别和分类工程模式、缺陷检测和识别等。这在工程质控制、产品检测和工艺分析等方面有着重要的应用前景。 总之,人工智能在工程应用中发挥着至关重要的作用,它可以用于工程设计和优化、智能监测和诊断、图像识别和模式识别等方面,帮助工程师提高系统性能、降低维护成本,并为工程领域的发展带来新的机遇和挑战。 ### 回答3: 人工智能的工程应用涉及到各个领域,包括制造业、交通运输、医疗保健、能源和环境等。在制造业中,人工智能可以用来优化生产线,提高生产效率和产品质。通过分析和预测数据,人工智能可以提供实时的生产指导,并帮助企业制定更合理的生产计划。 在交通运输领域,人工智能可以用来改善交通流和减少交通事故的发生。通过数据分析和模型优化,人工智能可以帮助交通管理部门优化信号灯配时,提供实时的交通状况信息,以及智能导航系统。人工智能还可以应用于自动驾驶技术,在未来,我们有望看到更智能、更安全的汽车。 在医疗保健领域,人工智能可以用于疾病诊断、药物研发和医疗管理等方面。通过分析大的病例数据和医学文献,人工智能可以帮助医生提高诊断的准确性,并辅助医疗决策。此外,人工智能还可以加速药物研发的过程,发现新的治疗方法和药物。同时,人工智能还可以用于医疗管理,通过分析海的医疗数据,提供个性化的医疗方案和健康管理建议。 在能源和环境领域,人工智能可以用于能源生产和管理的优化。通过分析天气、能源需求和供给等数据,人工智能可以提供更可靠和高效的能源系统。此外,人工智能还可以在环境监测和污染治理方面发挥作用,通过分析大的环境数据,提供准确的预警和治理方案,帮助保护环境和减少污染。 总之,人工智能的工程应用涉及到各个领域,具有广泛的应用前景和巨大的潜力。通过结合人工智能和工程技术,我们有望实现更智能、更高效和更可持续的社会发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值