代码可以参考:使用tensorflow的模型文件,修改参数名称和数值,合并两个模型等
https://blog.csdn.net/chanbo8205/article/details/88172592
我们的写法也是类似这个博客的写法。
-
def main():
-
if not os.path.exists(args.new_checkpoint_path):
-
os.makedirs(args.new_checkpoint_path)
-
with tf.Session() as sess:
-
new_var_list=[] #新建一个空列表存储更新后的Variable变量
-
for var_name, _ in tf.contrib.framework.list_variables(args.checkpoint_path): #得到checkpoint文件中所有的参数(名字,形状)元组
-
var = tf.contrib.framework.load_variable(args.checkpoint_path, var_name) #得到上述参数的值
-
new_name = var_name
-
new_name = args.add_prefix + new_name #在这里加入了名称前缀,大家可以自由地作修改
-
#除了修改参数名称,还可以修改参数值(var)
-
print('Renaming %s to %s.' % (var_name, new_name))
-
renamed_var = tf.Variable(var, name=new_name) #使用加入前缀的新名称重新构造了参数
-
new_var_list.append(renamed_var) #把赋予新名称的参数加入空列表
-
print('starting to write new checkpoint !')
-
saver = tf.train.Saver(var_list=new_var_list) #构造一个保存器
-
sess.run(tf.global_variables_initializer()) #初始化一下参数(这一步必做)
-
model_name = 'deeplab_resnet_altered' #构造一个保存的模型名称
-
checkpoint_path = os.path.join(args.new_checkpoint_path, model_name) #构造一下保存路径
-
saver.save(sess, checkpoint_path) #直接进行保存
-
print("done !")
-
if __name__ == '__main__':
-
main()