VisualStudio CUDA 信息

本文介绍了不同版本的Visual Studio及其对应的VC版本,并详细展示了如何通过命令行查询GPU的计算能力,包括CUDACapabilityMajor/Minor版本号等关键信息。
部署运行你感兴趣的模型镜像

(1)VisualStudio 版本

visual studio version(eg2022), release version(eg17.4.2), build version(eg17.4.33122.133) 

visual studio version(eg2019), release version(eg16.11.21), build version(eg16.11.33027.164)

VC版本号 VS对应版本
vc6 VC6.0
vc7 VS2002
vc7.1 VS2003
vc8 VS2005
vc9 VS2008
vc10 VS2010
vc11 VS2012
vc12 VS2013
vc13 VS2014
vc14 VS2015
vc15 VS2017
vc16 VS2019

vc17 VS2022

Visual Studio 2022 build numbers and release dates

Visual Studio 2019 Release Dates and Build numbers

========================================================

=======================================================

(2)cuda下载

CUDA Toolkit Archive

Table 1. CUDA Toolkit and Compatible Driver Versions

Table 2. Windows Compiler Support in CUDA 10.2

Wiki各个cuda版本支持的capabilities

========================================================

(3)GPU Compute Capability

官网查询

Your GPU Compute Capability

命令行

Microsoft Windows [版本 10.0.19044.2251]
(c) Microsoft Corporation。保留所有权利。

C:\Users\Administrator>cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite>deviceQuery
deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Quadro RTX 3000"
  CUDA Driver Version / Runtime Version          11.7 / 10.1
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 6144 MBytes (6442123264 bytes)
  (30) Multiprocessors, ( 64) CUDA Cores/MP:     1920 CUDA Cores
  GPU Max Clock rate:                            1305 MHz (1.30 GHz)
  Memory Clock rate:                             6001 Mhz
  Memory Bus Width:                              192-bit
  L2 Cache Size:                                 3145728 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               zu bytes
  Total amount of shared memory per block:       zu bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          zu bytes
  Texture alignment:                             zu bytes
  Concurrent copy and kernel execution:          Yes with 6 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  CUDA Device Driver Mode (TCC or WDDM):         WDDM (Windows Display Driver Model)
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      No
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.7, CUDA Runtime Version = 10.1, NumDevs = 1, Device0 = Quadro RTX 3000
Result = PASS

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite>

您可能感兴趣的与本文相关的镜像

PyTorch 2.8

PyTorch 2.8

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### 如何在 Visual Studio 中置和使用 CUDA #### 项目设置 为了使项目能够识别并编译 CUDA 文件,在创建或已有 C++ 项目的基础上,需右键点击解决方案资源管理器中的项目名称,选择“生成依赖项”,再选择“生成自定义”。此时会弹出文件浏览器窗口以便定位到本地安装路径下的特定文件夹。对于版本 v12.0 的 CUDA 工具包而言,默认情况下这些必要的构建扩展位于 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\extras\visual_studio_integration\MSBuildExtensions`[^1]。 #### 环境变量确认 确保系统环境变量已正确设置了 CUDA 路径;这一步骤至关重要因为缺失的话可能导致链接错误或其他编译问题。如果发现未被加入,则应当手动添加相应条目指向 CUDA 安装目录下的 bin 子目录以及 lib\x64 子目录等位置[^4]。 #### 创建首个 CUDA 应用程序实例 启动 Visual Studio 后可以通过新建项目向导来建立支持 CUDA 编程的应用程序模板。按照提示操作直至完成新项目的初始化流程。作为验证手段之一,尝试运行一个简单的矩阵相加案例——这是官方提供的入门级示例之一,其成功执行意味着开发环境已经就绪可以着手更复杂的任务了。 ```cpp #include <iostream> __global__ void add(int *a, int *b, int *c){ *c = *a + *b; } int main(){ int a,b,c; // Host code omitted for brevity. int *d_a,*d_b,*d_c; cudaMalloc((void**)&d_a,sizeof(int)); cudaMalloc((void**)&d_b,sizeof(int)); cudaMalloc((void**)&d_c,sizeof(int)); cudaMemcpy(d_a,&a,sizeof(int),cudaMemcpyHostToDevice); cudaMemcpy(d_b,&b,sizeof(int),cudaMemcpyHostToDevice); add<<<1,1>>>(d_a,d_b,d_c); cudaMemcpy(&c,d_c,sizeof(int),cudaMemcpyDeviceToHost); std::cout << c; cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); return 0; } ``` 此代码片段展示了如何编写基本的 CUDA 函数用于两个整数求和,并通过调用该函数实现设备端的数据处理逻辑。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值