杜教筛
文章平均质量分 92
佐理慧
默默的学习
展开
-
51nod 2026 Gcd and Lcm
51nod 2026 Gcd and Lcm原题链接https://www.51nod.com/onlineJudge/questionCode.html#!problemId=2026题目大意给你了f=φ−f=\varphi^-计算∑i=1n∑j=1nf(gcd(i,j))f(lcm(i,j))\sum_{i=1}^n\sum_{j=1}^nf\big(gcd(i,j)\big)f\big(lcm原创 2017-09-05 21:51:33 · 716 阅读 · 0 评论 -
特殊函数的前缀和
ORZ唐老师 唐老师的那篇积性函数前缀和666呀。摩拜嘻嘻。来一篇学后感。记任意算术函数ff的前缀和为:Sf(n)=∑i=1nf(i)S_f(n)=\sum_{i=1}^nf(i)记:C(n)=∑d|nA(d)B(nd)C(n)=\sum_{d|n}A(d)B(\frac{n}{d})注:上式子形如C(n)=∑ab=nA(a)B(b)C(n)=\sum_{ab=n}A(a)B(b)称这一卷积形式为原创 2017-09-04 12:02:12 · 990 阅读 · 0 评论 -
51nod 1222 最小公倍数计数
51nod 1222 最小公倍数计数链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222次题有毒。。。。计算∑i=1n∑j=1i∑t=ji[lcm(j,t)=i]\sum_{i=1}^n\sum_{j=1}^i\sum_{t=j}^i[lcm(j, t)=i]周阁筛:非常经典的周阁筛。F(n)=∑a=1n∑b=a原创 2017-10-31 18:42:26 · 740 阅读 · 1 评论 -
51nod 1847 奇怪的数学题
51nod 1847 奇怪的数学题原题链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1847定义:sgcd(a,b)sgcd(a,b)为aa与bb的次大公约数f(a)f(a)为aa的次大约数sgcd(a,b)=f(gcd(a,b))sgcd(a,b)=f\big(gcd(a,b)\big)特别的:f(1)=0f原创 2017-10-22 11:14:12 · 1242 阅读 · 0 评论 -
51nod 1239 欧拉函数之和
51nod 1239 欧拉函数之和链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239φ∗id1=id0\varphi*id_1=id_0Sφ(n)=n−∑i=2niSφ(⌊ni⌋)S_{\varphi}(n)=n-\sum_{i=2}^niS_{\varphi}\big(\Big\lfloor\frac{n}{i原创 2017-09-20 18:45:10 · 333 阅读 · 0 评论 -
51nod 1227 平均最小公倍数
51nod 1227 平均最小公倍数原题链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1227A(n)=1n∑i=1nlcm(i,n)A(n)=\frac{1}{n}\sum_{i=1}^nlcm(i,n)∑k=1nA(k)=∑k=1n1k∑i=1klcm(i,k)=∑k=1n1k∑i=1kkigcd(i,k)=∑k原创 2017-09-20 18:10:55 · 524 阅读 · 0 评论 -
51nod 1220 约数之和
定义除数函数:σk(n)=∑a|nak\sigma_{k}(n)=\sum_{a|n}a^k令d=σ1d=\sigma_1题目要求计算:∑i=1n∑j=1nd(ij)\sum_{i=1}^n\sum_{j=1}^nd(ij)之前做BZOJ的时候做过一题。http://blog.csdn.net/zlh_hhhh/article/details/77849859BZOJ 4176 Lucas的数论对于原创 2017-09-10 22:21:16 · 715 阅读 · 0 评论 -
51nod 1237 最大公约数之和 V3
51nod 1237 最大公约数之和 V3原题链接: https://www.51nod.com/onlineJudge/submitDetail.html#!judgeId=353365题面错误。原意是计算: G=∑i=1n∑j=1ngcd(i,j)G=\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)G=∑i=1n∑j=1ngcd(i,j)=∑d=1nd∑i=1n∑j=1n[gc原创 2017-09-28 09:09:07 · 519 阅读 · 0 评论 -
51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3原题链接: http://www.51nod.com/onlineJudge/questionCode.html#problemId=1238¬iceId=338278题面错误。。。题目的实际意思是:G=∑i=1n∑j=1nlcm(i,j)G=\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)因为题面的错误 。反反复复推了好久。按照一原创 2017-09-26 20:26:50 · 662 阅读 · 0 评论 -
BZOJ 4176 Lucas的数论
BZOJ 4176 Lucas的数论原题链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4176题目是要求计算:∑i=1n∑j=1n∑d|ij1\sum_{i=1}^n\sum_{j=1}^n\sum_{d|ij}1设:nm=∏i=1rPxi+yiinm=\prod_{i=1}^rP_i^{x_i+y_i}其中:n=∏i=1rPxiin=\原创 2017-09-05 12:09:10 · 511 阅读 · 0 评论 -
51nod 1244 莫比乌斯函数之和
51nod 1244 莫比乌斯函数之和原题链接https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244题目是让你计算梅藤斯函数。经典杜教筛u∗I=eu*I=eM(n)=1−∑i=2nM(⌊ni⌋)M(n)=1-\sum_{i=2}^nM(\big\lfloor\frac{n}{i}\big\rfloor)#include原创 2017-09-06 00:12:04 · 533 阅读 · 0 评论 -
2018 ICPC 徐州 计蒜客 - Easy Math
计蒜客 - Easy Math题目给定m<2∗109,n<1012m<2∗109,n<1012mans=∑i=1mμ(in)ans=∑i=1mμ(in)ans=\sum_{i=1}^m\mu(in) 显然: μ(n)=0μ(n)=0\mu(n)=0时 ans=0ans=0ans=0 当mu(n)!=0mu(n)!=0mu(n)!=0时: ans=∑i=1mμ(in...原创 2018-09-09 21:43:43 · 425 阅读 · 1 评论