分数的循环节
令r⊥s且0<r<s,对于分数
rs=0.c1c2c3...
的b进位制形式。有时候会出现循环情况。即:
存在一个n,k 有:
ci+k=ci ,其中:i>n , 0<ci<b
那么何时会出现循环。何时又不会呢?
显然:
α=rs=c1b1+c2b2+c3b3......
如果α不是循环的,那么必然存在一个数字n有:
αbn=c1c2c3..cn
显然:s∣bn
这也就是说。每一个整除s的素因子也整出b .
那么符合上述条件的。最小的n必然是最小的。使得s∣bn 的n
即:当整除s 的每一个素数都整除b时;
则:α 的b进制展开。小数点后面的长度为n ,其中:n为最小的使得s∣bn 的数。
下面证明n是其长度。
如果α 的展开长度为n+l.那么有:
αbn=∑i=1ncibn−i+∑i=1lcn+ibi
因为s∣bn,所以αbn为整数。矛盾。得证。
如果α是循环的。
记:s=cd 且d⊥b,c的每一个素因子也是b 的素因子。
这也就是说,c是满足c 的每一个素因子都是b的且是最大的
令n 为:c∣bn最小的n
令hc=bn
bn×rs=hrd
令
A+ed=hrd
显然e⊥d,这是因为:e=hr mod d且r⊥d且b⊥d
显然d=1时。α不循环。
当d>1时。ed必然循环。因为不存在整数 v使得d∣bv
现在计算循环节长度。
因为:
A+ed=bn∑i≥1cibi=∑i≥1cibn−i+bn∑i>ncibi
因为
bn∑i>ncibi<1
所以:
ed=bn∑i>ncibi
令:v=orddb,即v为b 模d意义的阶。(d⊥b )
则:
bv=td+1
则:
bved=(td+1)ed=te+ed=bn+v∑i>ncibi=∑i=n+1n+vcibn+v−i+bn+v∑i>n+vcibi=∑i=n+1n+vcibn+v−i+bn∑i>nci+vbi
所以:bn∑i>ncibi=bn∑i>nci+vbi
所以:ci=ci+v
现在证明:n是自小预循环(证明了这一点自然而然就证明了v为最小循环节)
假设,存在更小的预循环m ,且此时最小循环节为k.则:
α=c1b1+c2b2+..+cmbm+∑j≥01bjk(cm+1bm+1+...+cm+kbm+k)
∑j≥01bjk=∑j≥0(−1bk)j(−1j)=11−1bk=bkbk−1
α=c1b1+c2b2+..+cmbm+bkbk−1(cm+1bm+1+...+cm+kbm+k)=c1bm−1+c2bm−2+...cmb0+cm+1bk−1+cm+2bk−2+...+cm+kb0bm(bk−1)=rcd
因为d⊥b。所以c∣bm,这于n的定义矛盾。
∑j≥01bjk=∑j≥0(−1bk)j(−1j)=11−1bk=bkbk−1
α=c1b1+c2b2+..+cmbm+bkbk−1(cm+1bm+1+...+cm+kbm+k)=c1bm−1+c2bm−2+...cmb0+cm+1bk−1+cm+2bk−2+...+cm+kb0bm(bk−1)=rcd