1.一个实验
一束粒子穿S装置(包含两段等距相反的均匀磁场),因某种性质(自旋为1的粒子)会分成三束,挡住下面两束后穿过完全相同的装置结果如下:
结果记为:
旋转装置:
概率应满足归一性:
然后做下述实验:
测试结果:
(T不放挡板时没有粒子通过,相当于没有用T改变基础态)
结论:
用i/j标识+/0/-等基础态,我们得到下面三个基本结论:
这里的A是任意的,其中可以加挡板/旋转角度/增加电场磁场。
一旦确认下来,在1的基础上(自旋为1),可以用9个数字的矩阵表示:
这就是我们后面大量提及的算符。
2.认识自旋
磁偶极矩:
电子是带 (−1e) 的 带电粒子 ,单位为基本电荷,他的角动量来自两种方向,自旋和轨道方向。从经典电磁学中知,电荷会产生磁偶极矩,并产生磁极,而两端产生的磁极性机率是一样的。这个电子就有如一个磁铁一样。其中一个结果是当外加一个磁场时,而产生一个转矩,磁矩方向是依据场的方向。
如果电子被视为一个古典的带电粒子,透过转动可知角动量L,和磁偶极矩μ 得下式:
me代表的是电子的不变质量,请注意角动量L在此可以是自旋角动量,轨道角动量,或是总角动量。
用任何方法也无法测量电子的角动量和磁偶极矩,但是却可以测量沿着定轴的分量,如:
自旋为1/2的情况:
3.泡利算符



操作流程如下:
Y轴的情况自行推导,这个给出最后的结论:
有了这个我们就可以计算任意的角度概率了

归纳起来就是:
因为它有个很巧妙的应用: