量子力学奇妙之旅-算符和电子自旋

本文探讨量子力学中的算符概念,通过实验解释电子自旋现象,展示磁偶极矩和角动量的关系,并介绍了自旋为1/2的特殊情况。此外,还提及了泡利算符在计算不同角度概率中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.一个实验

一束粒子穿S装置(包含两段等距相反的均匀磁场),因某种性质(自旋为1的粒子)会分成三束,挡住下面两束后穿过完全相同的装置结果如下:

结果记为:

旋转装置:

概率应满足归一性:

然后做下述实验:

测试结果:

(T不放挡板时没有粒子通过,相当于没有用T改变基础态) 

 

结论:

用i/j标识+/0/-等基础态,我们得到下面三个基本结论:

 这里的A是任意的,其中可以加挡板/旋转角度/增加电场磁场。

一旦确认下来,在1的基础上(自旋为1),可以用9个数字的矩阵表示:

这就是我们后面大量提及的算符。

2.认识自旋

磁偶极矩:

电子是带 (−1e) 的 带电粒子 ,单位为基本电荷,他的角动量来自两种方向,自旋轨道方向。从经典电磁学中知,电荷会产生磁偶极矩,并产生磁极,而两端产生的磁极性机率是一样的。这个电子就有如一个磁铁一样。其中一个结果是当外加一个磁场时,而产生一个转矩磁矩方向是依据场的方向。

如果电子被视为一个古典的带电粒子,透过转动可知角动量L,和磁偶极矩μ 得下式:

me代表的是电子不变质量,请注意角动量L在此可以是自旋角动量,轨道角动量,或是总角动量。

 

用任何方法也无法测量电子的角动量和磁偶极矩,但是却可以测量沿着定轴的分量,如:

 自旋为1/2的情况:

3.泡利算符

电子的自旋角动量纯粹是一个量子力学的物理量,它并没 有经典对应,因此它只能用算符来描述,我们记为 S = ( S x , S y , S z ) S 的三个分量我们记作 S i , i = 1 , 2 , 3 分别对应 S x , S y , S z 。电子的自旋只有两个取值 ±h/2, 这意味着自旋算符的每一个分量都只有 ±h/2 的本征值.
我们经常用泡利算符来表示自旋:
当讨论Z轴分量时,算符对应的是泡利矩阵 σ ˆ z 是一个 2 × 2 厄密矩阵,它有两个本征态和两个实数本征值。

 

所以 | u | d 都是 σ ˆ z 的本征态,它们相应的本征值分别是 1 1 。 对于一个可观测量,量子力学规定观测的结果是相应算符的本征值。所以对于算符 σ ˆ z 的测量结果只可能是 ± 1
任意方向的自旋:

 

操作流程如下:

考虑另一个特殊情况,自旋沿 x 方向,即 ⃗n = { 1 , 0, 0},这时我们有⃗nσˆ= σˆx,算符 σˆx 代表的可观测量是自旋沿 x 轴的分量,我们定义两个自旋态(目的是获得正负1的本征值)

 

 Y轴的情况自行推导,这个给出最后的结论:

有了这个我们就可以计算任意的角度概率了 

泡利算符的性质

 

 归纳起来就是:

 因为它有个很巧妙的应用:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值