复杂度分析的理论基础

复杂度分析的理论基础

通常我们考虑的优化问题形式如下:
f ∗ = min ⁡ x ∈ X f ( x ) . f^*=\min _{x\in X}f(x). f=xXminf(x).
根据约束集合 X X X 和目标函数 f ( x ) f(x) f(x) 的类型对上诉优化问题进行分类:

  • 约束/无约束优化问题: X ⊂ R n / X ≡ R n X \subset \mathbb{R}^n / X\equiv \mathbb{R}^n XRn/XRn;
  • 光滑/非光滑优化问题: f ( x ) f(x) f(x) X X X 上可/不可导;
  • 凸/强凸/非凸优化问题: f ( x ) f(x) f(x) 是凸/强凸/非凸函数;
  • 随机优化问题: f ( x ) = E ξ [ F ( x , ξ ) ] f(x)= \mathbb{E}_{\xi}[F(x,\xi)] f(x)=Eξ[F(x,ξ)]

为了分析优化算法在求解问题的效率,将引入复杂度分析的概念。

复杂度分析的问题模型有三个部分:

  1. 全局信息

    • f ( x ) f(x) f(x) 是凸函数、强凸函数、非凸函数; f ( x ) f(x) f(x) 是光滑函数、非光滑函数。
    • f ( x ) f(x) f(x) 是复合函数, f ( x ) = g ( x ) + h ( x ) . f(x)=g(x)+h(x). f(x)=g(x)+h(x).
    • f ( x ) f(x) f(x) 是随机优化问题, min ⁡ x ∈ X f ( x ) : = E [ F ( x , ξ ) ] , \min_{x\in X} f(x):=\mathbb{E}[F(x,\xi)], minxXf(x):=E[F(x,ξ)], ξ \xi ξ 是随机变量。
    • 将凸函数空间划分:
      • C ( X ) = C 0 ( X ) C(X)=C^0(X) C(X)=C0(X) 是所有连续函数的集合。
      • C L 0 , 0 ( X ) : C_L^{0,0}(X): CL0,0(X): ∥ f ( x ) − f ( y ) ∥ ≤ L ∥ x − y ∥ , ∀ x , y ∈ X . \lVert f(x)-f(y)\rVert\leq L\lVert x-y\rVert,\quad \forall x,y\in X. f(x)f(y)Lxy,x,yX.
      • C L 1 , 1 ( X ) : C_L^{1,1}(X): CL1,1(X): ∥ ∇ f ( x ) − ∇ f ( y ) ∥ ≤ L ∥ x −
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值