问题描述:
给定由n个整数(包含负整数)组成的序列a1,a2,...,an,求该序列子段和的最大值。
当所有整数均为负值时定义其最大子段和为0。
依此定义,所求的最优值为:
例如,当(a1,a2 , a3 , a4 , a5 ,a6)=(-2,11,-4,13,-5,-2)时,
最大子段和为:
11+(-4)+13 =20
1、最大子段和问题的简单算法:
代码:
- #include<iostream>
- using namespace std;
- int MaxSum(int a[],int n,int &besti,int &bestj){
- int sum=0;
- int i,j,k;
- for(i=1;i<=n;i++)
- for(j=i;j<=n;j++)
- {
- int thissum=0;
- for(k=i;k<=j;k++)thissum+=a[k];
- if(thissum>sum){
- sum=thissum;
- besti=i;
- bestj=j;
- }
- }
- return sum;
- }
- int main(){
- int n,a[100],m,i,j,maxsum;
- cout<<"请输入整数序列的元素个数n:"<<endl;
- cin>>n;
- cout<<"请输入序列中各元素的值a[i](一共"<<n<<"个)"<<endl;
- //for(m=1;m<=n;i++)
- //cin>>a[m];
- for(m=0;m<n;m++)
- cin>>a[m];
- int b[100];
- for(m=0;m<n;m++)
- b[m+1]=a[m];
- maxsum=MaxSum(b,n,i,j);
- cout<<"整数序列的最大子段和是:"<<maxsum<<endl;
- cout<<"besti="<<i<<endl;
- cout<<"bestj="<<j<<endl;
- system("pause");
- }
此算法的时间复杂度:O(n3)。
可对此算法进行适当改进,使其时间复杂度变为:O(n2)。
代码:
- #include<iostream>
- using namespace std;
- int MaxSum(int a[],int n,int &besti,int &bestj){
- int sum=0;
- int i,j,k;
- for(i=1;i<=n;i++){
- int thissum=0;
- for(j=i;j<=n;j++)
- {
- thissum+=a[j];
- if(thissum>sum){
- sum=thissum;
- besti=i;
- bestj=j;
- }
- }
- }
- return sum;
- }
- int main(){
- int n,a[100],m,i,j,maxsum;
- cout<<"请输入整数序列的元素个数n:"<<endl;
- cin>>n;
- cout<<"请输入序列中各元素的值a[i](一共"<<n<<"个)"<<endl;
- //for(m=1;m<=n;i++)
- //cin>>a[m];
- for(m=0;m<n;m++)
- cin>>a[m];
- int b[100];
- for(m=0;m<n;m++)
- b[m+1]=a[m];
- maxsum=MaxSum(b,n,i,j);
- cout<<"整数序列的最大子段和是:"<<maxsum<<endl;
- cout<<"besti="<<i<<endl;
- cout<<"bestj="<<j<<endl;
- system("pause");
- }
代码:
//最大子段和,分治算法。T(n)=O(nlog(n))。
- #include<iostream>
- using namespace std;
- int MaxSubSum(int a[],int left,int right){
- int sum=0;
- if(left==right)sum=a[left]>0?a[left]:0;
- else{
- int center=(left+right)/2;
- int leftsum=MaxSubSum(a,left,center);
- int rightsum=MaxSubSum(a,center+1,right);
- int s1=0;
- int lefts=0;
- for(int i=center;i>=left;i--){
- lefts+=a[i];
- if(lefts>s1)s1=lefts;
- }
- int s2=0;
- int rights=0;
- for(int i=center+1;i<=right;i++){
- rights+=a[i];
- if(rights>s2)s2=rights;
- }
- sum=s1+s2;
- if(sum<leftsum)sum=leftsum;
- if(sum<rightsum)sum=rightsum;
- }
- return sum;
- }
- int main(){
- int n,a[100],m,maxsum;
- cout<<"请输入整数序列的元素个数n:"<<endl;
- cin>>n;
- cout<<"请输入序列中各元素的值a[i](一共"<<n<<"个)"<<endl;
- for(m=0;m<n;m++)
- cin>>a[m];
- int b[100];
- for(m=0;m<n;m++)
- b[m+1]=a[m];
- maxsum=MaxSubSum(b,1,n);
- cout<<"整数序列的最大子段和是:"<<maxsum<<endl;
- system("pause");
- }
3 最大子段和问题的动态规划算法:
代码:
- #include<iostream>
- using namespace std;
- int MaxSum(int n,int a[]){
- int sum=0;
- int b=0;
- for(int i=1;i<=n;i++){
- if(b>0)b+=a[i];
- else b=a[i];
- if(b>sum)sum=b;
- }
- return sum;
- }
- int main(){
- int n,a[100],m,maxsum;
- cout<<"请输入整数序列的元素个数n:"<<endl;
- cin>>n;
- cout<<"请输入序列中各元素的值a[i](一共"<<n<<"个)"<<endl;
- for(m=0;m<n;m++)
- cin>>a[m];
- int b[100];
- for(m=0;m<n;m++)
- b[m+1]=a[m];
- maxsum=MaxSum(n,b);
- cout<<"整数序列的最大子段和是:"<<maxsum<<endl;
- system("pause");
- }