[BZOJ1492][NOI2007]货币兑换Cash-斜率优化DP-CDQ分治

货币兑换Cash

Description

小Y最近在一家金券交易所工作。该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下简称B券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 K 天中 A券 和 B券 的价值分别为 AK 和 BK(元/单位金券)。为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法。

比例交易法分为两个方面:
(a)卖出金券:顾客提供一个 [0,100] 内的实数 OP 作为卖出比例,其意义为:将OP% 的 A券和 OP% 的 B券 以当时的价值兑换为人民币;
(b)买入金券:顾客支付 IP 元人民币,交易所将会兑换给用户总价值为 IP 的金券,并且,满足提供给顾客的A券和B券的比例在第 K 天恰好为 RateK;

例如,假定接下来 3 天内的 Ak、Bk、RateK 的变化分别为:

题面1
假定在第一天时,用户手中有 100元 人民币但是没有任何金券。用户可以执行以下的操作:

题面2
注意到,同一天内可以进行多次操作。小Y是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经知道了未来N天内的A券和B券的价值以及Rate。他还希望能够计算出来,如果开始时拥有S元钱,那么N天后最多能够获得多少元钱。

Input

输入第一行两个正整数N、S,分别表示小Y能预知的天数以及初始时拥有的钱数。接下来N行,第K行三个实数AK、BK、RateK,意义如题目中所述。对于100%的测试数据,满足:0 < AK ≤ 10;0 < BK ≤ 10;0 < RateK ≤ 100;MaxProfit ≤ 10^9。
【提示】
1.输入文件可能很大,请采用快速的读入方式。
2.必然存在一种最优的买卖方案满足:
每次买进操作使用完所有的人民币;
每次卖出操作卖出所有的金券。

Output

只有一个实数MaxProfit,表示第N天的操作结束时能够获得的最大的金钱数目。答案保留3位小数。

Sample Input

3 100
1 1 1
1 2 2
2 2 3

Sample Output

225.000

HINT

题面3


第一次写CDQ分治,同时也是第一次写斜率优化DP……
想想其实这两个方法早就能学会的啊……
以前居然纠结于为什么CDQ分治这样做是对的而不去看代码……


思路:
首先,这是一个dp。
然后,我们能得出转移方程:

f[i] 表示第 i 天的最大收益,则有:

f[i]=max{f[j](rate[j]a[i]+b[i])a[j]rate[j]+b[j]}

上式的意义是,枚举之前的某一个日子用所有的钱买入券,今天卖出所有券所能得到的最大钱数。

那么我们得到了一个 O(n2) 的dp……
根据数据,显然会T……
那么咱来试图优化一下这个dp吧。

如果我们现在在更新 f[i] ,要用 f[k] 代替之前的最优决策 f[j] ,那么有:

f[k](rate[k]a[i]+b[i])a[k]rate[k]+b[k]f[j](rate[j]a[i]+b[i])a[j]rate[j]+b[j]

x[k]=f[k]rate[k]a[k]rate[k]+b[k] 为第k天买入所能获得的最多的A券,
y[k]=f[k]a[k]rate[k]+b[k] 为第k天买入所能获得的最多的B券。
很明显的一点是, x[k] y[k] 的值在 f[k] 被求出后就固定了。

那么上式变成:
x[k]a[i]+y[k]b[i]x[j]a[i]+y[j]b[i]

简单粗暴,有没有?
化一化:

y[j]y[k]x[j]x[k]a[i]b[i]

那么把 a[i]b[i] 看做当前斜率,则我们就是要令点对 (x[j],y[j]) (x[k],y[k]) 的斜率小于它,才能用 f[k] 来更新当前最优解。

很显然那么最优解在一个凸包上。
如果当前斜率单调的话,可以直接维护凸包, O(n) 出解。
那么这就是斜率优化。

但是很遗憾,这题它的斜率不单调。
然而,我们可以让它尽量单调~
这可是个有序更新的dp呢~
那么,如果现在我们把原dp顺序序列拆成两半,那么是不是 [mid+1,r] 区间的更新顺序和 [l,mid] 区间的答案更新毫无关系?

这就是CDQ分治的核心思想
或者说,就是运用分治,让它有序。
对于一个区间 [l,r] ,我们先递归处理 [l,mid] ,此时我们已经得到了 [l,mid] 区间的最优解
然后,我们用 [l,mid] 的最优解去更新 [mid+1,r]
最后,递归处理 [mid+1,r]

呃然而目前为止这不是跟普通dp没什么区别么?
事实上,咱几个月前也是这么想的。
然而,事实上, [mid+1,r] 区间的更新顺序和 [l,mid] 区间的答案更新毫无关系

所以,我们可以先递归处理 [l,mid] ,并把 [l,mid] 区间的答案先做成一个凸包,这对 [mid+1,r] 毫无影响。
然后可以把 [mid+1,r] 区间的询问按其斜率排好序,这对 [l,mid] 毫无影响。
之后,用刚做好的 [l,mid] 的凸包上的答案更新已经有序的 [mid+1,r] ,直接单调队列扫一遍就好。
接着, [mid+1,r] 递归内部更新。
最后, [l,r] 内部按坐标归并排序,为构造凸包做准备。
于是,神奇的事情发生了——我们的每次更新都是 O(n) 的!

那么,我们通过归并排序保证 [l,mid] 答案有序, [mid+1,r] 询问有序,每层递归更新 O(n) ,递归分治 O(logn) 层,得到最终复杂度 O(nlogn)

是不是很棒呢~

对于这题,根据上述流程直接上CDQ分治就好~

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

using namespace std;

typedef double db;

const int N=120009;
const db eps=1e-7;
const db Inf=1e9;

struct query
{
    db a,b,rate,k;
    int id;
}q[N],qtmp[N];

inline bool operator <(query satori,query koishi)
{
    return satori.k<koishi.k;
}

struct coord
{
    db x,y;
}p[N],ptmp[N];

inline bool operator <(coord satori,coord koishi)
{
    return satori.x<koishi.x+eps || (fabs(satori.x-koishi.x)<eps && satori.y<koishi.y+eps);
}

int n,stk[N];
db f[N];

inline int read()
{
    int x=0,ff=1;char ch=getchar();
    while(ch<'0' || '9'<ch)
    {
        if(ch=='-')
            ff=-1;
        ch=getchar();
    }
    while('0'<=ch && ch<='9')
    {
        x=x*10+(ch^48);
        ch=getchar();
    }

    return x*ff;
}

inline db slope(int i,int j)
{
    if(i==0)
        return -Inf;
    if(j==0)
        return Inf;
    if(fabs(p[i].x-p[j].x)<=eps)
        return -Inf;
    return (p[i].y-p[j].y)/(p[i].x-p[j].x);
}

void solve(int l,int r)
{
    if(l==r)
    {
        f[l]=max(f[l],f[l-1]);
        p[l].y=f[l]/(q[l].a*q[l].rate+q[l].b);
        p[l].x=p[l].y*q[l].rate;
        return;
    }

    int mid=l+r>>1,l1=l,l2=mid+1;

    for(int i=l;i<=r;i++)
        if(q[i].id<=mid)
            qtmp[l1++]=q[i];
        else
            qtmp[l2++]=q[i];
    for(int i=l;i<=r;i++)
        q[i]=qtmp[i];

    solve(l,mid);

    int top=0;
    for(int i=l;i<=mid;i++)
    {
        while(top>=2 && slope(i,stk[top])+eps>slope(stk[top],stk[top-1]))
            top--;
        stk[++top]=i;
    }

    int top2=1;
    for(int i=r;i>=mid+1;i--)
    {
        while(top2<top && q[i].k<slope(stk[top2],stk[top2+1]))
            top2++;
        f[q[i].id]=max(f[q[i].id],p[stk[top2]].x*q[i].a+p[stk[top2]].y*q[i].b);
    }

    solve(mid+1,r);

    l1=l,l2=mid+1;
    for(int i=l;i<=r;i++)
        if((p[l1]<p[l2] || l2>r) && l1<=mid)
            ptmp[i]=p[l1++];
        else
            ptmp[i]=p[l2++];
    for(int i=l;i<=r;i++)
        p[i]=ptmp[i];

}

int main()
{
    scanf("%d%lf",&n,&f[0]);
    for(int i=1;i<=n;i++)
    {
        scanf("%lf%lf%lf",&q[i].a,&q[i].b,&q[i].rate);
        q[i].id=i;q[i].k=-q[i].a/q[i].b;
    }

    sort(q+1,q+n+1);
    solve(1,n);

    printf("%.3lf\n",f[n]);

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值