[CodeForces242E]XOR on Segment-线段树

XOR on Segment

You’ve got an array a, consisting of n integers a1, a2, …, an. You are allowed to perform two operations on this array:

Calculate the sum of current array elements on the segment [l, r], that is, count value al + al + 1 + … + ar.
Apply the xor operation with a given number x to each array element on the segment [l, r], that is, execute . This operation changes exactly r - l + 1 array elements.
Expression means applying bitwise xor operation to numbers x and y. The given operation exists in all modern programming languages, for example in language C++ and Java it is marked as “^”, in Pascal — as “xor”.

You’ve got a list of m operations of the indicated type. Your task is to perform all given operations, for each sum query you should print the result you get.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the size of the array. The second line contains space-separated integers a1, a2, …, an (0 ≤ ai ≤ 106) — the original array.

The third line contains integer m (1 ≤ m ≤ 5·104) — the number of operations with the array. The i-th of the following m lines first contains an integer ti (1 ≤ ti ≤ 2) — the type of the i-th query. If ti = 1, then this is the query of the sum, if ti = 2, then this is the query to change array elements. If the i-th operation is of type 1, then next follow two integers li, ri (1 ≤ li ≤ ri ≤ n). If the i-th operation is of type 2, then next follow three integers li, ri, xi (1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 106). The numbers on the lines are separated by single spaces.

Output

For each query of type 1 print in a single line the sum of numbers on the given segment. Print the answers to the queries in the order in which the queries go in the input.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams, or the %I64d specifier.

Examples

input
5
4 10 3 13 7
8
1 2 4
2 1 3 3
1 2 4
1 3 3
2 2 5 5
1 1 5
2 1 2 10
1 2 3
output
26
22
0
34
11
input
6
4 7 4 0 7 3
5
2 2 3 8
1 1 5
2 3 5 1
2 4 5 6
1 2 3

output

38
28

水题一眼切……
然而调tag调了半天……

(╯‵□′)╯︵┻━┻


题意:
维护一个数据结构,支持两个操作:
1 l r :输出[l,r]区间的和
2 l r x :将[l,r]区间的数异或上x

思路:
看到异或显然是要拆位了~
然后显然是要用线段树。
在每个节点维护一个桶,分别存每个二进制位的0和1分别出现了多少个即可~
异或操作相当于打个tag,将对应有1的二进制位处的0和1的个数交换即可~

是不是很水然而咱就是调了将近1h.jpg

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

using namespace std;

typedef long long ll;
const int N=1e5+9;

struct node
{
    int bit[22][2];
    node(){memset(bit,0,sizeof(bit));}

    inline void operator = (int x)
    {
        for(int i=20;i>=0;i--)
            bit[i][(x>>i)&1]++;
    }

    inline ll get()
    {
        ll ans=0;
        for(int i=20;i>=0;i--)
            ans=(ans<<1)+(ll)bit[i][1];
        return ans;
    }

    inline node operator + (node o)
    {
        node ret;
        for(int i=20;i>=0;i--)
        {
            ret.bit[i][0]=bit[i][0]+o.bit[i][0];
            ret.bit[i][1]=bit[i][1]+o.bit[i][1];
        }
        return ret;
    }
};

node t[N<<2];
int n,m,tag[N<<2],a[N];

inline int read()
{
    int x=0;char ch=getchar();
    while(ch<'0' || '9'<ch)ch=getchar();
    while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
    return x;
}

inline void flush(int x,int val)
{
    for(int i=20;i>=0;i--)
        if((val>>i)&1)
            swap(t[x].bit[i][0],t[x].bit[i][1]);
}

inline void push(int x,int l,int r)
{
    if(l==r)
    {
        tag[x]=0;
        return;
    }
    if(tag[x])
    {
        int mid=l+r>>1;
        flush(x<<1,tag[x]);
        flush(x<<1|1,tag[x]);
        tag[x<<1]^=tag[x];
        tag[x<<1|1]^=tag[x];
        tag[x]=0;
    }
}

inline void update(int x)
{
    t[x]=t[x<<1]+t[x<<1|1];
}

void build(int x,int l,int r)
{
    tag[x]=0;
    if(l==r)
    {
        t[x]=a[l]=read();
        return;
    }
    int mid=l+r>>1;
    build(x<<1,l,mid);
    build(x<<1|1,mid+1,r);
    update(x);
}

void modify(int x,int l,int r,int dl,int dr,int val)
{
    push(x,l,r);
    if(l==dl && r==dr)
    {
        tag[x]^=val;
        flush(x,tag[x]);
        return;
    }

    int mid=l+r>>1;
    if(dr<=mid)
        modify(x<<1,l,mid,dl,dr,val);
    else if(mid<dl)
        modify(x<<1|1,mid+1,r,dl,dr,val);
    else
    {
        modify(x<<1,l,mid,dl,mid,val);
        modify(x<<1|1,mid+1,r,mid+1,dr,val);
    }
    update(x);
}

ll query(int x,int l,int r,int dl,int dr)
{
    push(x,l,r);
    if(l==dl && r==dr)
        return t[x].get();
    int mid=l+r>>1;
    if(dr<=mid)
        return query(x<<1,l,mid,dl,dr);
    if(mid<dl)
        return query(x<<1|1,mid+1,r,dl,dr);
    return query(x<<1,l,mid,dl,mid)+query(x<<1|1,mid+1,r,mid+1,dr);
}

int main()
{
    n=read();
    build(1,1,n);

    m=read();
    for(int i=1,op,l,r;i<=m;i++)
    {
        op=read();
        l=read();
        r=read();
        if(op==1)
            printf("%I64d\n",query(1,1,n,l,r));
        else
            modify(1,1,n,l,r,read());
    }

    return 0;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值