XOR和路径
Description
在错误的思路上纠结好久为什么是错的……
果然还是个baka.jpg
思路:
考虑按位考虑,令f[i]表示在仅考虑当前位的情况下,i到
那么可以高斯消元:
边界条件为f[n]=0,因为n作为终止态,路径一定为0。
然后直接高斯消元,每一位为
直接乘起来,做完了~
#include<bits/stdc++.h>
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while(ch<'0' || '9'<ch)ch=getchar();
while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
return x;
}
typedef double db;
typedef pair<int,int> pr;
const int N=109;
const int K=31;
const db eps=1e-9;
int n,m;
vector<pr> g[N];
db a[N][N];
inline db gauss()
{
for(int i=1;i<=n;i++)
{
int p=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[j][i])>fabs(a[p][i]))
p=j;
if(p!=i)swap(a[i],a[p]);
for(int j=i+1;j<=n;j++)
if(fabs(a[j][i])>eps)
{
db mul=a[j][i]/a[i][i];
for(int k=i;k<=n+1;k++)
a[j][k]-=a[i][k]*mul;
}
}
for(int i=n;i>=1;i--)
{
a[i][n+1]/=a[i][i];a[i][i]=1;
for(int j=1;j<i;j++)
a[j][n+1]-=a[j][i]*a[i][n+1];
}
return a[1][n+1];
}
int main()
{
n=read();m=read();
for(int i=1,u,v,w;i<=m;i++)
{
u=read();v=read();w=read();
g[u].push_back(pr(v,w));
if(u!=v)g[v].push_back(pr(u,w));
}
db ans=0;
for(int i=K-1;i>=0;i--)
{
for(int j=1;j<=n;j++)
for(int k=1;k<=n+1;k++)
a[j][k]=0;
for(int u=1;u<=n;u++)
{
db per=1/(db)g[u].size();
a[u][u]=1;a[u][n+1]=0;
if(u==n)continue;
for(int k=0,e=g[u].size();k<e;k++)
{
if(((g[u][k].second>>i)&1))
{
a[u][g[u][k].first]+=per;
a[u][n+1]+=per;
}
else
a[u][g[u][k].first]-=per;
}
}
ans+=(db)(1<<i)*gauss();
}
printf("%.3f\n",ans);
return 0;
}