[BZOJ2337][HNOI2011]XOR和路径-高斯消元-期望

本文介绍了一种通过高斯消元解决XOR路径概率问题的方法。核心思路是按位考虑,利用f[i]表示从节点i到节点n路径上某位为1的概率,并通过构建方程组求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

XOR和路径

Description

pic1


在错误的思路上纠结好久为什么是错的……
果然还是个baka.jpg


思路:
考虑按位考虑,令f[i]表示在仅考虑当前位的情况下,in的路径当前位为1的概率。
那么可以高斯消元:
f[i]=(i,j)E,w=1(1f[j])+(i,j)E,w=0f[j]
边界条件为f[n]=0,因为n作为终止态,路径一定为0。

然后直接高斯消元,每一位为1的概率即为解出的f[1]
直接乘起来,做完了~

#include<bits/stdc++.h>

using namespace std;

inline int read()
{
    int x=0;char ch=getchar();
    while(ch<'0' || '9'<ch)ch=getchar();
    while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
    return x;
}

typedef double db;
typedef pair<int,int> pr;
const int N=109;
const int K=31;
const db eps=1e-9;

int n,m;
vector<pr> g[N];
db a[N][N];

inline db gauss()
{
    for(int i=1;i<=n;i++)
    {
        int p=i;
        for(int j=i+1;j<=n;j++)
            if(fabs(a[j][i])>fabs(a[p][i]))
                p=j;
        if(p!=i)swap(a[i],a[p]);
        for(int j=i+1;j<=n;j++)
            if(fabs(a[j][i])>eps)
            {
                db mul=a[j][i]/a[i][i];
                for(int k=i;k<=n+1;k++)
                    a[j][k]-=a[i][k]*mul;
            }
    }
    for(int i=n;i>=1;i--)
    {
        a[i][n+1]/=a[i][i];a[i][i]=1;
        for(int j=1;j<i;j++)
            a[j][n+1]-=a[j][i]*a[i][n+1];
    }
    return a[1][n+1];
}

int main()
{
    n=read();m=read();
    for(int i=1,u,v,w;i<=m;i++)
    {
        u=read();v=read();w=read();
        g[u].push_back(pr(v,w));
        if(u!=v)g[v].push_back(pr(u,w));
    }

    db ans=0;
    for(int i=K-1;i>=0;i--)
    {
        for(int j=1;j<=n;j++)
            for(int k=1;k<=n+1;k++)
                a[j][k]=0;

        for(int u=1;u<=n;u++)
        {
            db per=1/(db)g[u].size();
            a[u][u]=1;a[u][n+1]=0;
            if(u==n)continue;
            for(int k=0,e=g[u].size();k<e;k++)
            {
                if(((g[u][k].second>>i)&1))
                {
                    a[u][g[u][k].first]+=per;
                    a[u][n+1]+=per;
                }
                else
                    a[u][g[u][k].first]-=per;
            }
        }

        ans+=(db)(1<<i)*gauss();
    }

    printf("%.3f\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值