数学黑洞(二)任何数都逃不出的西西弗斯黑洞

本文介绍了数学中的一个奇特现象——123黑洞,又称西西弗斯黑洞。这个数学概念表明,任何正整数通过特定计算步骤都将最终转化为123。通过实例和证明,揭示了这个数学黑洞的无限循环特性。
摘要由CSDN通过智能技术生成

如果我写的博文《数学黑洞(一)令人拍案叫绝的卡布列克常数》惊艳到您了,那西西弗斯黑洞也同样不会让您感到失望。西西弗斯黑洞又叫123黑洞,很明显,这个要出现的不可思议的现象要与再简单不过的数字123扯上了,与6174黑洞还要限制数字位数相比,123黑洞可适用于适合正整数!那么下面我们就看一下关于这个黑洞的描述:


设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,

  例如:1234567890,
  偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个。
  奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个。
  总:数出该数数字的总个数,本例中为 10 个。
  新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510。
  重复:将新数5510按以上算法重复运算,可得到新数:134。
  重复:将新数134按以上算法重复运算,可得到新数:123。
  结论:对数1234567890,按上述算法,最后必得出123的结果,换言之,任何数的最终结果都无法逃逸123黑洞。



下面我们还是用程序验证这一结论。

代码清单:

import java.util.Random;


public class HeiDong123 {

	static final int N = 100;
	static int count = 0;
	public static void main(String[] args) {
		
		Random r = new Random();
		/*随机产生N个随机数进行测试*/
		for(int i = 0; i < N; i++)
			go(r.nextInt(r.nextInt(1000000)+1));	
		/*判断N个随机数结果是否产生N个123*/
		System.out.println(count == N);
		
	}

	private static void go(int a) {
		
		int oushu = 0;
		int jishu = 0;
		int sum = 0;
		while(a > 0){
			if((a & 1) == 0)
				oushu++;
			else
				jishu++;
			a /= 10;
		}
		sum = oushu + jishu;
		int temp = sum;
		int n = 1;
		while(temp > 0){
			n *= 10;
			temp /= 10;
		}
		int m = n;
		temp = jishu;
		if(temp == 0)
			jishu = 10;
			
		while(temp > 0){
			m *= 10;
			temp /= 10;
		}
		sum = oushu * m + jishu * n + sum;
		if(sum == 123){
			count++;
			return;
		}
			
		go(sum);
	}

}


此问题已在2010年由我国的唯美主义和自然主义男士秋屏证明。

以下内容转载至秋屏的新浪博客上的证明原文:

http://blog.sina.com.cn/s/blog_4d2e0dd80100ih0x.html

“西西弗斯串(数学黑洞)”现象与其证明

                       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值