PhyDNet:Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction

本文介绍了一种尝试将深度网络与物理约束相结合的方法,利用卷积模拟偏导,通过momentloss监督,使网络能够学习并补充物理信息,提升ConvLSTM等现有网络的性能。文章重点介绍了PhyCell单元,其计算公式类似于热力学方程、波动方程等,通过网络学习得到的Kt参数,对数学模型进行修正。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


参考博客来源: link


主要思想是试图用深度网络构建物理约束模型,方法是用卷积模拟偏导,用moment loss作监督,学到物理信息,从而对已有的网络(文中使用ConvLSTM)进行信息补充。

在这里插入图片描述
如图,右边为已有深度网络可以捕捉到的信息,本文试图使用深度网络通过偏微分方程来建模先验物理知识,即左边的信息。最后将物理信息和已有信息结合获得更好的结果。

在这里插入图片描述
在这里插入图片描述
本文主要创新点在PhyCell,该单元的计算公式:

在这里插入图片描述

E(u)表示的是对输入真实帧的encode,ht为t时刻隐变量,Φ(h(t, x))是隐变量对空间每个像素点的偏导和,该公式与很多物理模型公式类似,如热力学方程、波动方程、对流扩散方程等。

在这里插入图片描述

Kt也是由网络学出来。该式可以改写成以下公式:

在这里插入图片描述

式(6)被认为是通过数学模型推算出的数值,式(7)则被认为是基于数据训练对数学模型进行的修正,其中K公式如下:

在这里插入图片描述

### Program of Thoughts Prompting 方法中的计算与推理分离 在数值推理任务中,Program of Thoughts (PoT) Prompting 方法通过生成可执行的编程代码来表示逻辑推理步骤,而不是直接提供完整的解决方案或计算路径。这种方法允许将复杂的推理过程分解成更易于管理和验证的小部分[^1]。 具体而言,在处理数值推理问题时,PoT 提出了一个框架,其中推理被编码为一系列可以由外部工具(如Python解释器)执行的具体操作指令。这意味着实际的算术运算和其他类型的数值处理是由专门设计用于此类任务的语言特性来承担的,而模型本身则专注于构建正确的算法结构和流程控制语句[^2]。 这种做法不仅简化了模型内部的工作负载,还使得整个系统的灵活性大大增加——因为只要改变所使用的脚本语言或者引入新的库函数就可以轻松扩展功能范围。此外,由于最终产生的是一段清晰易读且能够独立运行的源码文件,因此也便于后续的人工审查以及错误排查工作。 ```python def calculate_interest(principal, rate, time): """Calculate compound interest using the formula A=P(1+r)^t""" amount = principal * ((1 + rate) ** time) return round(amount, 2) # Example usage demonstrating separation between logic and computation logic_description = """ Given a principal P=1000 dollars at an annual interest rate r=0.05 over t=3 years, we want to find out how much money will accumulate after this period. """ print(f"{logic_description}\nThe accumulated value is ${calculate_interest(1000, 0.05, 3)}.") ``` 上述例子展示了如何利用 Python 函数 `calculate_interest` 来封装具体的利息计算细节,而在描述性的字符串变量 `logic_description` 中仅保留高层次的任务说明。这种方式体现了 PoT 如何有效地实现了计算过程同推理表述之间的解耦合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值