卷积
卷积如何操作
通过此变换之后,图像达到了平滑效果。我们可以把变换时所使用的函数称为卷积核。
卷积核就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。
例如:上述例子中卷积核为
[1,1,1;
1,1,1; * 1/9
1,1,1]
卷积定义
通常会将卷积核进行180度调整,即公式中H函数下标进行的相应操作。但是在实际使用时,由于训练得到的模型和待预测的模型判断方法一致,所以也可以不必进行卷积核调整。
任何的平移操作都可以使用卷积实现,还可以实现平滑、
卷积性质
性质 | 公式 |
---|---|
叠加性 | filter(f1+f2)=filter(f1)+filter(f2) |
平移不变性 | filter(shift(f))=shift(filter(f)) |
交换律 | a* b=b* a |
结合律 | (a* b) c=a (b* c) |
分配律 | a* (b* c)=a* b + a* c |
标量 | ka* b=a* kb=k(a* b) |
边界填充
卷积操作后的图像要小于原图像,通过边界填充后,我们可以实现卷积前后图像大小不变。
常用填充方法:
1.常数填充(常用0填充)
2.拉伸
3.镜像