【CV-Learning】卷积神经网络预备知识

本文详细介绍了卷积的概念及其在图像处理中的应用,包括平滑、高斯卷积核、边缘检测和纹理表示。讨论了高斯滤波器在消除噪声和平滑图像的作用,以及Canny边缘检测器的工作原理。还提到了卷积的性质如何减少计算复杂度,并探讨了基于卷积核组的纹理表示方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积

卷积如何操作

在这里插入图片描述
通过此变换之后,图像达到了平滑效果。我们可以把变换时所使用的函数称为卷积核
卷积核就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。
例如:上述例子中卷积核为
[1,1,1;
1,1,1; * 1/9
1,1,1]

卷积定义

在这里插入图片描述
通常会将卷积核进行180度调整,即公式中H函数下标进行的相应操作。但是在实际使用时,由于训练得到的模型和待预测的模型判断方法一致,所以也可以不必进行卷积核调整。
任何的平移操作都可以使用卷积实现,还可以实现平滑、

卷积性质

性质 公式
叠加性 filter(f1+f2)=filter(f1)+filter(f2)
平移不变性 filter(shift(f))=shift(filter(f))
交换律 a* b=b* a
结合律 (a* b) c=a (b* c)
分配律 a* (b* c)=a* b + a* c
标量 ka* b=a* kb=k(a* b)

边界填充

卷积操作后的图像要小于原图像,通过边界填充后,我们可以实现卷积前后图像大小不变。
常用填充方法
1.常数填充(常用0填充)
2.拉伸
3.镜像

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值