tensorflow 是什么?
- 节点----------处理数据
- 线---------节点间的输入和输出的关系
- 线上运输的是丈量tensor
- 节点被分配到各种计算设备上运行
tensorflow2.0 主要特性
- 使用tf.keras 和 eager mode 进行更加简单的模型构建
- 鲁邦的跨平台模型部署 (鲁邦, 就是不敏感)
- 强大的研究实验
- 清除不推荐使用的API和减少重复来碱化API
Tensorflow2.0 简化的模型开发流程
- 使用tf.data加载数据
- 使用tf.keras构建模型, 也可以使用premade estimator 验证模型
- 使用tensorflow hub进行迁移学习
- 使用eager mode进行运行和调试
- 使用分发策略来进行分布式训练
- 导出到savedModel
- 使用tensorflow serve, tensorflow lite, tensorflow.js 来部署模型
- tensorflow serve服务 , 直接通过HTTP/REST or GPRC/协议缓冲区
- tensorflow lite 可部署在Android, iOS或嵌入式系统上
10.Tensorflow.js 可以在javascript 中部署
.
Tensorflow vs PyTorch
- Tensorflow 2.0
-
是动态图, eager mode避免1.0缺陷, 直接集中在python中
- PyTorch
-
是动态图, numpy的扩展, 直接集中在python中
随着时间变化, 两者越来越接近
序列化和部署
- Tensorflow支持更加广泛,
- pytorch支持比较简单
分类问题和回归问题
- 分类问题预测的是类别, 模型输出的是概率分布
- 回归问题预测的是值, 模型输出的是一个实数值