正方体顶点与三角形架构深度解析

通过正方体体看三维模型设计架构

一、基础拓扑分析

1.1 原始顶点分布(未优化)

理论构造:

  • 每个立方体面由4个独立顶点构成四边形
  • 6个面 × 4顶点 = 24个原始顶点
  • 每个顶点包含:
    struct Vertex {
         
        Vector3 position;
        Vector3 normal;
        Vector2 uv;
        // 其他顶点属性...
    }
    

可视化拓扑:

graph TD
    F1[Front Face] --> V1((0,0,0))
    F1 --> V2((1,0,0))
    F1 --> V3((1,1,0))
    F1 --> V4((0,1,0))
    
    B1[Back Face] --> V5((0,0,1))
    B1 --> V6((1,0,1))
    B1 --> V7((1,1,1))
    B1 --> V8((0,1,1))
    
    // 其他面类似分布...

1.2 三角形分解

三角化规则:

  • 每个四边形面分解为2个三角形
  • 6个面 × 2三角形 = 12个三角形
  • 索引缓冲结构示例:
    // 前面三角形索引
    0,1,2, 2,3,0
    // 后面三角形索引
    4,5,6, 6,7,4
    // 其他面类似...
    

二、顶点合并机制

2.1 顶点合并条件

合并条件 技术原理
几何位置相同 必须满足 float3 坐标完全一致(考虑浮点精度误差)
法线方向一致 硬边处理时需要保持原始法线,平滑着色时可合并
UV坐标匹配 同一纹理映射区域的顶点才能合并
切线空间一致 当使用法线贴图时,切线空间计算需要保持一致

合并流程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

权心

请我喝杯咖啡可好?-v- ..

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值