概率论理解
文章平均质量分 67
无敌的炎龙侠
车到山前必有路,条条大路通罗马。
展开
-
联合概率和条件概率区别
为什么从定义上看,觉得联合概率和条件概率是一个意思?P(A|B) 和 P(AB) 这俩真的不是一个东西吗??=碎碎念开始,正文请跳往第2分割线===虽然我产生了这种疑问,但我的直觉告诉我:大概是个傻逼。于是我秉承着认真学习打破沙锅问到底的原则重新做人!!打开了网页开始搜索:但这对我的理解并没有什么卵用。于是我来到了这个曾经教会我什么是期权的地方 —— 逼乎,来寻求一个我低智大脑可以理解的答案。事实证明,经过各位大佬的花式回答举例(我爱扑克牌大佬的举例!!)经过了一整个小时的左思右想我终于差不多想明原创 2021-04-21 16:17:12 · 2746 阅读 · 6 评论 -
似然(likelihood)和概率(probability)的区别与联系
似然(likelihood)和概率(probability)的区别与联系https://blog.csdn.net/songyu0120/article/details/85059149原创 2021-04-21 16:16:27 · 213 阅读 · 0 评论 -
极大似然估计法
如何通俗地理解概率论中的「极大似然估计法」?总结:以过去大量的相同事件来判断目前正在发生的类似事件,这就是极大似然我们假设硬币有两面,一面是“花”,一面是“字”。一般来说,我们都觉得硬币是公平的,也就是“花”和“字”出现的概率是差不多的。如果我扔了100次硬币,100次出现的都是“花”。在这样的事实下,我觉得似乎硬币的参数不正常。极有可能两面都是“花”!这种通过事实,反过来猜测硬币的情况,就是似然。通过事实,推断出最有可能的硬币情况,就是最大似然估计。1 概率vs似然让我们先来比较下概率原创 2021-04-21 16:15:46 · 1092 阅读 · 0 评论 -
概率论入门:边缘化
概率论入门:边缘化本文将通过解决一个相当简单的最大似然问题,介绍**边缘化(marginalisation)**的概念。本文涉及的一些基本概率概念可以参考本系列的第一篇文章。什么是边缘化边缘化是一种通过累加一个变量的可能值以判定另一个变量的边缘分布的方法。这听起来有点抽象,让我们看一个例子。假设我们想知道天气是如何影响英国人的幸福感的,也就是P(幸福感∣天气)P(幸福感|天气)P(幸福感∣天气)假定我们具有衡量某人的幸福感所需的定义和设备,同时记录了某个英格兰人和某个苏格兰人所处位置的天气。原创 2021-04-21 16:14:05 · 1172 阅读 · 0 评论