权重参数中的adam_v,adam_m,lamb_m,lamb_v等一系列参数的讲解

今天加载了一下对应的nezha模型的权重内容,发现对应的权重名称之中,出现了如下的一些权重名称
‘bert/encoder/layer_3/attention/output/dense/bias/lamb_v’
‘bert/encoder/layer_1/attention/output/LayerNorm/beta/lamb_m’
‘bert/pooler/dense/bias/lamb_v’
‘bert/embeddings/word_embeddings/lamb_v’
等内容,阅读transformer的加载源码之中,有这样的一段注释:

for name, array in zip(names, arrays):
    name = name.split("/")
    # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
    # which are not required for using pretrained model
    if any(
            n in ["adam_v", "adam_m", "lamb_m", "lamb_v", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1",
                  "global_step", "good_steps", "loss_scale", 'bad_steps']
            for n in name
    ):
        logger.info("Skipping {}".format("/".join(name)))
        continue

可以看出注释的意思是在加载出对应的权重内容之后,如果权重之中带有"adam_v",“adam_m”,“lamb_m”,"lamb_v"的后缀内容的时候,就不需要加载对应的权重值,这里的原因我们通过举adam优化器的例子为例,来说明这些权重的作用
adam优化器的对应公式:
adam优化器的对应公式可以看出公式中有对应的 m t m_{t} mt v t v_{t} vt,而这些正是后缀为\adam_v,\adam_w的权重的作用,通过前一轮的权重内容去计算后一轮的权重内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值