人工智能落地、
znsoft
A doctor of engineering dedicated to natural language processing.
展开
-
开源免费语音识别引擎 RapidASR
https://github.com/RapidAI/RapidASR本引擎基于wenet语音识别模型以及onnxruntime运行库,可跨平台支持所有操作系统,包括pc ,服务 器以及移动端系统。基于c++开发,只依赖于常 见运行库,不依赖于pytorch或libtorch, 短小精悍,易于分发。支持windows/linux/ios/android 系统。RapidAI 组织年度巨献。...原创 2022-01-01 06:22:28 · 8547 阅读 · 13 评论 -
训练自己的源码识别模型
我们使用guesslang 工具进行数据集下载处理。 利用 guesslangtool 下载训练数据,为了方便SCC研究人员,处理好的数据在本文最后有提供下载百度网盘,压缩包大小16G。 本数据包总共有训练文件约200万个,包括54种语言源码安装 guesslang 包pip install guesslang训练mkdir /data/ssd/model #改为你自己的模型保存目录guesslang --train /data/ssd/scc/...原创 2021-09-12 07:24:30 · 421 阅读 · 0 评论 -
onnxruntime中列出支持的provider
auto providers = Ort::GetAvailableProviders(); for (auto provider : providers) std::cout << provider << std::endl;原创 2021-04-22 17:59:49 · 1666 阅读 · 0 评论 -
TVM/onnx-mlir/Glow 的简单理解
神经网络经过脚本执行、专用推理库后来到了native 时代。如果我们按照 编程语言的运行方式进行划分: 脚本解析,JIT 和真编译。传统的训练框架训练如pytorch/tensorflow 可以看作脚本时代:解释执行。一、解析执行的脚本时代当我们使用tensorflow/pytorch/mxnet 训练了一个模型并保存后,我们将怎样使用它呢? 这个时候我们通常是直接用框架中的模型加载代码加载训练好的模型和参数,对需要推理的数据进行预处理(比如图片的正则化,NLP语料的分词/词干化等预处理),原创 2021-04-03 22:58:54 · 1457 阅读 · 2 评论