Windows 11已经支持使用directml加速 pytorch了。
2024.5.24 更新,新的torch-directml 包已经发布,完美支持常用算法。
-----------------------------------------------------------------------------------------------------
2021,11,16更新: directml-pytorch已经推出:
pip install pytorch-directml
详细教程:(4条消息) Windows下用amd显卡训练 : Pytorch-directml 重大升级,改为pytorch插件形式,兼容更好_znsoft的博客-CSDN博客_amd显卡 pytorch
-----------------------------------------------------------------------------
以 下为旧内容,依然适用,但是不推荐了。看横线以上的。
官方训练原理解释: ONNX Runtime Training Technical Deep Dive - Microsoft Tech Community
检查 支持的设备
import onnxruntime as ort
ort.get_device()
ONNX运行时(ORT)能够通过优化的后端训练现有的PyTorch模型。为此,我们为pythorch引入了一个pythorch API,称为ORTTrainer,可用于将pythorch模型的训练后端(实例torch.nn.Module
)切换到orttrainer
。这需要对trainer代码进行一些更改,比如替换PyTorch优化器,还可以选择设置标志来启用其他特性,比如mixed-precisiontraining。下面是一个将ONNX运行时培训集成到PyTorchpre-training脚本中的示例代码片段:
注:目前的API是实验性的,预计在不久的将来会有重大变化。我们的目标是改进接口,以提供与Pythorch训练的无缝集成,这需要对用户的训练代码进行最小的更改。
import torch
...
import onnxruntime
from onnxruntime.capi.ort_trainer import IODescription, ModelDescription, ORTTrainer
# Model definition
class Net(torch.nn.Module):
def __init__(self, D_in, H, D_out):
...
def forward(self, x):
...
model = Net(D_in, H, H_out)
criterion = torch.nn.Functional.cross_entropy
description = ModelDescription(...)
optimizer = 'SGDOptimizer'
trainer = ORTTrainer(model, criterion, description, optimizer, ...)
# Training Loop
for t in range(1000):
# forward + backward + weight update
loss, y_pred = trainer.train_step(x, y, learning_rate)
...